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Abstract—This paper presents a notable advance toward
development of a new method of increasing single-axis tracking
PV system power output by improving determination and near-
term prediction of optimum module tilt angle. The tilt angle
of the plane receiving the greatest total irradiance changes
with sun position and atmospheric conditions including cloud
formation and movement, aerosols and particulate loading, as
well as varying albedo within a module’s field of view. In this
work, we present a multi-input convolutional neural network
that can create a profile of plane-of-array irradiance versus
surface tilt angle over a full 180 degree arc from horizon to
horizon. As input, the neural network uses calculated solar
position and clear-sky irradiance values, along with sky images.
The target irradiance values are provided by the Multi-Planar
Irradiance Sensor (MPIS). In order to account for varying
irradiance conditions, the MPIS signal is normalized by the
theoretical clearsky global horizontal irradiance (GHI). Using
this information, the neural network outputs a N-dimensional
vector, where N is the number of points to approximate the
MPIS curve via Fourier resampling. The output vector of the
model is smoothed with a Gaussian kernel to account for
error in the downsamping and subsequent upsampling steps,
as well as to smooth the unconstrained output of the model.
These profiles may be used to perform near-term prediction of
angular irradiance, which can then inform the movement of a
PV tracker.

Index Terms—irradiance, deep learning, neural network,
photovoltaics

I. Introduction

For any photovoltaic (PV) system, it is necessary to
profile the site in order to have a working knowledge of the
solar insolation available for various system configurations.
It is known that solar insolation is dependent on the
angular position of the plane of measurement [1]. The
solar resource profile is important for both fixed-tilt and
tracking photovoltaic systems, as it informs the optimal
position of the modules; the more irradiance the module
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receives, the greater the power it generates. On clear-
sky days, the irradiance versus tilt angle profile is easy
to predict from the sun’s position. We define clear-sky
conditions as a point in time where there are no clouds,
rain, or other obstructions in the sky and the Sun is in
full view. However, on partially or fully overcast days,
the irradiance profile can be severely distorted due to
the obstruction and scattering of light by clouds. The
increase in diffuse light and reduction in direct irradiance
leads to a relative reduction in power conversion efficiency
for PV systems that continue to track the sun’s position
throughout these conditions. Our calculations indicate
that optimal tracking of the angle of maximum irradiance
(as opposed to solar position) can increase the power
production of single-axis tracking PV systems by up to 2%
per year, without modification of the tracking mechanism.
We expect the largest increase to occur in climates or
sites where cloud cover is very common. Additionally,
we expect increase in performance in climates where the
weather is variable in the short term; for example, when
the weather shifts every few hours. Here, we present
prediction of angular irradiance profiles from sky images.
The value of this approach is that the angular irradiance
can be informed in real time by local, observable weather
conditions. Therefore, the use of sky images provides
distinct advantages over multi-angle irradiance sensors:
1) the sky camera involves no moving parts and a single
sensor to collect data, and 2) sky images enable forecasting
of future weather conditions, which is not possible with
real-time irradiance sensors.

A. Dataset
The dataset for this project consists of output from

various measurement devices, located in Albuquerque,
New Mexico. The first device is the ASI-16 sky camera.
This camera produces fisheye-style images of the sky, and
is mounted at a fixed point facing upwards. A collection
of example sky images from the ASI-16 sky camera,
taken 4/1/20, is shown in Fig. 1. Additionally, there
are numerous pyranometers and other weather sensors at
the site, these can be used to verify the normalization
procedure.

The sensor that enables this study is the Multi-Planar
Irradiance Sensor (MPIS) developed by Augustyn & Com-
pany, Berkeley, California [2]. This sensor takes single-axis
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Fig. 1. ASI-16 sky images taken over a single day, 4/1/2020.

Fig. 2. Sample MPIS profiles for different times on the same day.
This day is clear in the morning and progressively becomes more
cloudy, which can be seen in a decrease in peak insolation and the
maximum of the curve shifting towards the normal ( 180◦).

sweeps of the sky from the eastern horizon to the western
horizon, and records the irradiance profiles. This profiling
provides direct measurement of the angle of maximum
Plane-of-Array (POA) irradiance, and allows comparison
of solar insolation for different tracker positions for the
same time. Fig. 2 shows multiple MPIS curves on different
times during the same day as the sample of sky images
shown in Fig. 1.

However, installing and operating MPIS units at indi-
vidual solar plants will add cost and complexity to plant
operation. While it is expected that ongoing improvement
of the MPIS design will result in cost reductions, the sky
camera model developed here also offers the potential

of near term forcasting of irradiance vs. tilt profiles
as tracker control system feedback, which the MPIS
alone cannot do. In this work, we use MPIS data as
ground truth to build solar transposition models from
sky images at the same location. It is hoped that co-
location of MPIS and sky camera units at a limited
number of sites may be enough to train the model for
more universal application. Therefore we use this data
as ground-truth to build solar transposition models from
sky images at the same location, to simplify the data
collection process for determining the angle of maximum
POA irradiance. Although conventional sky imagers like
the ASI-16 are quite costly as well, we find that a less
expensive option would be adequate, as experimental
study has shown that image resolutions as low as 128x128
pixels are viable inputs to the model. In fact, downscaling
the image to a lower resolution both decreases model
training time and improves convergence; this effect is
common to convolutional neural networks applied to very
high resolution data. It is hypothesized that downscaling
decreases overfitting as the linear interpolation smoothes
out camera noise. As we are only concerned with the larger
features (such as cloud cover) and not detail, there is
no significant advantage to excessively high-resolution sky
images.

As seen in the sky images in Fig. 1, the day shown
begins with some scattered clouds and progresses into
heavy cloud coverage. The corresponding MPIS curves
in Fig. 2, show the effects of this cloud coverage, such
as reduced irradiance and a trend towards horizontal in
the afternoon. During clear-sky conditions, MPIS curves
in the afternoon achieve maximum irradiance facing West
(above 90◦).

B. Exploratory Data Analysis
The concept of extracting weather data from sky images

has been explored previously. Most approaches, such as
Alonso et al. [3] and Long et al. [4] use classical image
processing approaches to extract pertinent information,
such as cloud coverage and movements. These approaches
focus on applying multiple image filters and other trans-
formations to individual images, as opposed to a statistical
learning technique like deep neural networks. Inspired by
these works, we conducted exploratory data analysis on
our images.

As shown in Figure 3, quite a bit of information can
be extracted from these images. The first area of focus
is identifying clouds in the images. This is a concern
because the presence of clouds in the sky will result in
a different irradiance profile from a clear sky. In the
literature, cloud area is generally extracted via a simple
threshold; however, we found this approach to be error-
prone in RGB color-space (A), as it often failed at border
regions between clouds and sky in particular. By switching
to hue-saturation-value (HSV) color space (B), we were
able to get a clear delineation between cloud and sky using



Fig. 3. Our classical image processing pipeline. A) the original image,
B), an image transformed to hue-saturation-value color space, C), an
adaptive threshold to extract clouds and D) location of the the sun
via maximum pixel intensity. Image D shows the sun location for a
different original image than the others because the classical image
processing method is prone to error in cloudy conditions, especially
when there is greater cloud cover.

an adaptive intensity threshold operation for segmentation
(C). Although this method is simple, it can be prone to
error due to sub-optimal parameter choices. Additionally,
since the intensity of the images may change due to
automatic adjustments in the camera, it is difficult to
choose a global threshold for the entire dataset.

Another metric of importance is the location of the Sun.
As in [5], we locate the Sun in an image by thresholding
the red channel of the image; in a similar manner, we
locate the center of the sky by thresholding the blue
channel (Figure 3 D). As noted by Savoy et al., if cloud
cover prevents visibility of the Sun, this method becomes
very error prone, as in Figure 3 parts A-C. Detection
of the Sun with respect to the image is difficult, but it
is very easy to calculate the Sun’s position relative to
an observer on the ground. This calculated quantity is
enough for the purposes of the neural network, preventing
error due to failure in the detection of the Sun in the sky
images. However, image detection of the sun’s position
is unnecessary due to its ease of calculation from the
date/time and location of the camera.

As the central motivation of this work is to observe
the effects of cloud cover on irradiance profiles, classical
image processing methods alone are inadequate due to
the limitations listed above. Therefore we have developed
a neural network-based method for predicting angular
profiles of POA irradiance from sky images.

II. Methodology
In this work, we present a multi-input convolutional

neural network, shown in Figure 4, to predict irradiance

Fig. 4. The structure of our multi-input CNN. The number of
neurons in the output layer are a function of the resampling
procedure; for a signal resampled to N = 50 points, the final layer will
have 50 neurons. Dropout and batch normalization layers, omitted
from this diagram, are included as well: batch normalization following
convolution layers and dropout after every other dense layer.

profiles. Multi-input neural networks have begun to gain
traction in other fields, such as identifying flowers from
multiple different angles [6]. This is a viable approach
for sky images because they contain a large amount of
qualitative information about the current status of the sky.
Additionally, the multi-input structure allows us to utilize
additional information that is relevant to the angular
irradiance profile, such as calculated solar position and
clear-sky irradiance.

Convolutional neural networks are a method where a
small filter (also called a kernel) slides (convolves) over
an image; the output of this operation is a matrix where
each entry is the dot product of the filter and each set
of points from the image. This operation is expressed
mathematically in Eq. 1.

(I ∗K)i,j =

k∑
m=1

k∑
n=1

Km,nIi+m−1,j+n−1 + b (1)

In this equation, I is the image (a matrix of shape (i,
j)), b is a bias term, and K is the kernel. In our neural
network, the kernel is usually of size (3,3) or (5,5), which



is used in the Conv2D layers of Figure 4. Following
convolutional steps, max pooling (MaxPooling2D) layers
are used to downsample the feature map provided by
the convolutional layers to highlight the most present
features.. The weights of the Conv2D kernel (the numbers
inside the matrix) are learned via back-propagation like
the weights and biases of a fully connected layer.

The second input to the neural network is the position
of the sun relative to the sky camera, given in a spherical
coordinate system. The position of the sun in the sky
can be calculated for a given time of day by a variety of
methods. In this work, we use the solar position method
presented by Reda and Andreas of NREL [7], implemented
in PVlib-python [8]. This calculation provides the location
of the sun in terms of zenith and azimuth, which is
fed into the neural network in a multilayer perceptron-
style sub-network. This sub-network can be considered a
parallel branch of the whole that is responsible for its
own specialized computation. We hypothesize that the
neural network uses this information to map the spherical
coordinates onto the image, thereby locating the sun
irrespective of cloud cover. In order to do so, the two
sub-networks (the CNN and the multilayer perceptron)
are subsequently joined. This concept was also developed
independently by Paletta et al. [9] in 2020, who used a
similar data augmentation process for irradiance predic-
tion from sky images, but opted for additional ResNet-
like residual connections we found to be unnecessary.
Additionally, Paletta et al. directly predict irradiance,
which is not useful for our intended application, and is
easily measured via conventional instruments that do not
provide information on angular irradiance.

In the final combination step, dense (fully-connected)
outputs of the two sub-networks are concatenated and
fed into a final sequence of dense layers, the output of
which is a regression vector of shape N , where N is the
number of points to approximate angles of irradiance.
The MPIS sensor samples 360 points over the 180 degree
range from horizon to horizon; that is, it samples at
half-angles. However, that level of specificity is difficult
to predict because this is a high-dimensional regression
problem over the real numbers, which is a continuous
search space. The problem is then much more difficult
numerically than a classification problem as there are not a
discrete number of possible states. It is therefore useful to
approximate the curve with fewer points. Experimentally,
we have found that N = 90 is optimal; a finer regression
results in a model that is more difficult to train and prone
to overfitting. Thus, the target of the model equals the
number of output neurons equals N , as the MPIS curves
are pre-processed prior to passing them to the model.

The points in the training data are resampled using
the Fourier method, implemented in the scipy package,
and the model is then trained on the downsampled data,
resulting in an output of the same dimension. The Fourier
downsampling method simply transforms the data into

Fig. 5. Resampling MPIS signal from the late afternoon on a clear
day via Fourier method

the frequency domain and removes the second and third
groups of elements, which are the half with the highest
frequency components As the data are real numbers, the
FFT results in mirrored complex conjugates in the lower
half of the transformed space. Thus, the middle 50% is
removed to preserve this symmetry while downsampling.
This then removes the samples with the highest frequen-
cies. The results of this process are shown in Figure 5. In
order to compare the downsampled output and the true
value, the model output is padded via equal repetition of
elements, or Fourier upsampling. However, this series of
transforms and the additional error in the predicted curves
can sometimes cause a jagged model output, whereas real
anglular irradiance profiles are smooth. Gaussian smooth-
ing, a common technique in image and signal processing,
can be applied to smooth the curve, assuming Gaussian
error. This method is calibrated by the σ parameter of the
underlying distribution, which specifies a higher or lower
degree of smoothness. This process can be seen in Figure
6.

Training this model requires a slight modification of
gradient descent. This is because the model is split into
two sub-networks; typically, the model is sequential and
the gradient flows directly backwards, but here the model
forks into two branches. In this case, there are N outputs
and 2 inputs. Thus, the rule for gradient flow can be
described using the Chain Rule in Eq. 2

∂L
∂wi

=

N∑
n=1

∂L
∂yn

∂yn
∂wi

(2)

where L is the loss function, wi is a weight and yn is an
output. The loss function is mean squared error of the
samples Yi:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (3)

In this manner, contribution to the overall loss (Equation
3) can be calculated for each weight. As the loss propagates

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html


Fig. 6. Smoothing the model output using a Gaussian kernel. Note
that this is the model output, which is naturally less smooth than
the input due to model error, as a neural network is a very flexible
model with little bias and high variance. Since the input MPIS signal
is always smooth, assuming a Gaussian distribution of internal error
appears to perform well.

through the network, both sub-networks are updated
according to the overall loss. Since the model outputs a
vector, the total loss is just the sum of the loss of the
individual elements.

The normalization process constrains the value of each
element to be between zero and some constant ϵ, where
ϵ depends on the specific normalization procedure used.
To reflect this constraint, a custom activation function for
the output is used. Usually, no activation is provided for
a regression output. However, since the range of values is
known a priori, we can give the network a hint by applying
the activation function in Eq. 4

ϵ-ReLU(x) = min(ReLU(x), ϵ) (4)

where ϵ is set to the maximal acceptable value and
ReLU(x) is the standard Rectified Linear Unit activation
function. For example, if the data is normalized between
0 and 1, setting ϵ = 1 will prevent the model from
overshooting without affecting the true values. Thus, the
activation function is linear over the range [0, ϵ], unlike
the nonlinear sigmoid, which may cause outputs to trend
towards the extremes. Experimentally, the addition of this
activation function allowed the model to converge faster
than without. Additionally, if the model encounters a
severe outlier or other anomaly when predicting a new
sample, then the amount of possible error can be limited.
Training curves for both the ϵ-ReLU and linear activation
functions can be seen in Figure 8.

Experimentally, it was found the ϵ-ReLU activation
produced smoother output curves; although the exact
cause is uncertain, the current hypothesis is that it
prevents overfitting by working in conjunction with early
stopping.

A particular issue of this model is that of normalization.
The MPIS signal is a function of raw irradiance values,

which are very difficult to predict from only a sky image
as there is no direct correlation between the image and
the raw irradiance values. Thus, the model would likely
attempt to memorize an irradiance/date/time mapping,
which is difficult to learn and very site-specific. Therefore,
the MPIS signal should be normalized or transformed to
mitigate these problems. One simple metric is to squeeze
all values between zero and one via min-max scaling.
However, this is a lossy metric; for example, solar noon
and diffuse conditions can have MPIS curves that are fairly
similar in shape, but have drastically different magnitudes.
Notably, this issue does not impact the correct angle of
maximal irradiance; thus, predicting the argmax of the
MPIS signal is a significantly easier problem.

A different metric that preserves this magnitude dif-
ference is the L2 norm, defined as ||x||2 ≡

√
x · x. The

L2 norm is a common baseline for normalization of an
arbitrary vector. By dividing by a vector norm (commonly
denoted as x

||x|| ), the values are constrained to some
value, depending on the type of normalization chosen.
Another choice may also be the infinity norm, which
is defined as ||x||∞ = max

i
(xi). This would essentially

result in normalizing by GHI on a clear day, giving the
normalization process physical meaning.

In fact, the ideal, clear-sky GHI is easily calculable
for a given time, latitude, and longitude; this work uses
the Ineichen model [10], implemented in PVlib-python.
Normalizing by this quantity results in a much smoother
curve that preserves relative magnitudes. Precisely, we
normalize by the clear sky GHI at solar noon; this results
in all curves, regardless of seasonality, to be within the
same range of values. The values range in magnitude
from zero to about one, as seen in Figure 7. This is
because maximum value of the MPIS signal (maximum
POA irradiance) on a clear day will always be greater
than or equal to the projected clear-sky GHI.

Experimentally, each type of normalization has different
drawbacks. The min-max scaling method is simple, and
does preserve the correct maximum, but the resulting
curve is often much less smooth and lacks the ability
to distinguish between curves of the same shape and
different magnitude. Clear-sky GHI normalization was
found to be the most optimal in this work, but does involve
some additional computation and is dependent on correct
calculation of clear-sky GHI. Regardless of normalization
method, the model accurately produces the argmax of the
MPIS signal, which is arguably the most important point,
as it represents the optimal real-time angle for a single-axis
tracker.

This work uses the Python programming language, and
the TensorFlow library with the Keras front-end. The
model was implemented using the Keras functional API for
automatic differentiation. The Adam optimizer was used
for training with mean squared error as the loss function.
Gradient clipping and weight decay were also used to aid



Fig. 7. A) Raw MPIS curves, and B) normalized MPIS curves that retain relative curve scaling. Raw MPIS curves, and B) normalized
MPIS curves that retain relative curve scaling. Most curves appear to scale proportionally to each other by the normalization process,
although there appears to be some small relative differences; for example, see the tallest blue curve. However, this does not affect the angle
of maximal irradiance by much, which is the most important quantity. This method of normalization is nonstandard, but since it is based
on a physical property of the data, it preserves the relative scale of the curves more correctly then other standard methods, such as scaling
via the L2 norm.

Fig. 8. Loss curves for two separate activation functions. The limited
ϵ-ReLU appears to add some stability to the training process.

the training process and prevent exploding/vanishing gra-
dients. An early stopping callback was used to terminate
the training process when the validation loss does not
improve for a set duration, as well as restore the best
set of weights on the validation set. Batch normalization
and dropout layers were used in addition to convolution,
pooling, and dense layers. The model was trained with
a custom generator function to operate in batch mode.
A Tesla V100 GPU with 32GB of VRAM was used to
accelerate training on Sandia’s deep learning platform,
which is also equipped with dual 24 core Intel Xenon
Platinum CPUs with 1.5 TB of RAM.

III. Results
The model was trained for 80 epochs, with 25 steps

per epoch and 8 samples per step, which is a total

16,000 samples. The hyperparameter N , which controls
the number of points to estimate, was set to 90. As
N increases, so does the time to model convergence.
Experimentally, a higher N results in lower training loss,
but higher validation loss, implying that the optimal value
lies somewhere in the middle of the range [0,180].

An series of example results can be shown in Figure
9. All samples shown are drawn from a period of about
a month; the model does capture seasonality effects, but
it is easier to interpret the model without seasonality.
The curves very clearly show that the model captures the
general shape of the angular irradiance profile, given the
sky image and calculated solar position. However, there
does remain some error, particularly in magnitude, due to
the high dimensionality required as well as the complex up
and down scaling required for model convergence. Notably,
without both the normalization and downscaling steps
(that is, asking the model to predict the MPIS curves
directly), the model fails to converge, even if it is supplied
the measured GHI, DNI, and DHI. Although the problem
is complex, there are actually a small number of possible
curves shapes in general. Thus, the model has three ”jobs”:
learn possible shapes, match to current conditions, and
scale accordingly; however, as neural networks are ”black
box” models, it is impossible to confirm if these are truly
the concepts learned.

As mentioned above, the model learns shape quite
well; as a result, it can identify the angle of maximal
irradiance with high accuracy, as shown in Figure 10. A
distribution of the absolute error in the irradiance itself at
the maximum point is shown in Figure 11. As shown, the
model performs exceedingly well, as the vast majority of
errors are less then 5 degrees off the true value. This error



Fig. 9. A) 10 randomly selected angular irradiance profile predictions for a variety of sky conditions. In the orange is a typical near solar
noon with some light clouds. The red is a cloudy morning, whereas the light blue is a bright, clear morning. B) The corresponding MPIS
curves for the selected profile predictions.

Fig. 10. Histogram of absolute error in predicting the angle of
maximum irradiance for 1000 test images.

can be considered basically negligible in when considering
tracker movement and precision.

Example error in irradiance for each predicted curve
shown in Fig. 9 can be seen in Figure 12.

The error appears to be most significant in the early
mornings and late evening. This is likely due to error
in upscaling to the true magnitude or an albedo effect.
Additionally, Fourier upsampling does cause some of the
oscillation at the endpoints as well. However, the model
appears to capture the relevant information for a near-
term forecasting tracking algorithm quite well.

The caveat to this model is that it is specific to the
site at which it was trained; conditions at a different
geographic location may or may not have similar angular
irradiance profiles and will not have similar magnitudes.
The normalization process should remove error due to
differing magnitudes, but there may be additional seasonal
or geographic effects that the model has not yet seen. In
the future, we plan to deploy more MPIS sensors and sky

Fig. 11. Histogram of absolute error in predicting the irradiance at
the angle of maximum irradiance. This quantity is the max of the
MPIS signal, which can be compared to the output of the model to
show error in the actual real irradiance value.

Fig. 12. Error for the same randomly selected test points



cameras to verify these and other assumptions about the
model.

IV. Conclusion
In this work we have demonstrated a convolutional

neural network transposition model that can replicate
the MPIS instrument signal (angular solar irradiance
profiles) with high accuracy using only sky images and
calculable quantities, such as the solar position and
clear-sky GHI. We also present several modifications of
the traditional sequential convolutional neural network
pipeline, including multiple input branches, resampling
and smoothing techniques, custom activation functions,
and other adaptions to this particular problem. Without
these modifications, training the network proved to be
impossible. These modifications also enable extensibility
to other sites where the absolute irradiance varies via
normalization.

Overall, the model allows easy deployment and profiling
of angular solar irradiance in real time. In particular, the
model proved to be very accurate at predicting the real-
time angle of maximal plane-of-array irradiance, which is
the theoretically optimal angle of a single-axis tracker.
In the future, this information will be integrated into a
single-axis tracking algorithm in order to optimize tracker
movements for overcast sky conditions. Additionally, fur-
ther testing will be performed in various climate zones to
validate and expand the model based on this data.
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