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ABSTRACT Accurate cloud detection is critical for advancing atmospheric monitoring and meteorological
forecasting. This paper presents the Cloud Detection Challenge, an initiative aimed at enhancing cloud
detection through innovative solutions using lidar-based ceilometer data. This initiative was hosted by
IEEE MetroXRAINE 2024, and 11 teams participated in this initiative. Participants were provided
with a novel dataset of backscatter profiles converted into time-height plots, offering unique insights
into atmospheric conditions beyond conventional imagery. Data collection employed a Lufft CHM 15k
ceilometer, capturing cloud dynamics every 15 seconds located near Mt. Etna, an active volcano in Italy. The
dataset includes 1568 hourly labeled backscatter profiles, serving as a benchmark for state-of-the-art deep
learning models. The challenge sets a baseline performance of 89.57% accuracy, 92.73% F1-score, 89.82%
precision, and 95.84% recall, inviting participants to develop models to exceed these results. Submissions
proposed a wide-range of AI-based approaches, including Transformer and Convolutional Neural Network
architectures, showcasing the potential of advanced image analysis techniques in lidar-based cloud detection.
This paper details the challenge framework, as well as the methodologies proposed by top-performing teams,
offering a comparative evaluation of their effectiveness. Our initiative advances cloud detection technologies
and underscores their broader implications for environmental monitoring, agriculture, and satellite imaging.
The insights and dataset presented herein lay the groundwork for future advancements in leveraging lidar
data for atmospheric analysis.

INDEX TERMS Binary classification, ceilometers, cloud detection challenge, computer vision, deep
learning, LIDAR.

I. INTRODUCTION
Climate and weather patterns significantly impact soci-
eties, influencing the economy and the public safety and
well-being. Extreme weather events can disrupt critical
infrastructures, affect transportation networks, and, in severe
cases, lead to catastrophic consequences, endangering lives
and property. In this context, technological tools capable of
accurately detecting and forecasting atmospheric phenomena
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are paramount. Among these tools, lidar-based ceilometers
stand out for their ability to provide precise, high-frequency
vertical measurements of cloud characteristics, making them
invaluable for localized atmospheric monitoring.

A ceilometer is a meteorological device used to measure
cloud base height by emitting a light beam and analyzing
its reflection [1], [2]. It can also assess aerosol concentration
through backscatter analysis. Different ceilometer types exist,
including lidar-based systems. As demonstrated in [3], lidar-
based systems offer a significant advantage over traditional
remote sensing methods, such as satellite photogrammetry,
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in different domains, when greater precision in detection
and analysis is required. Lidar enables more accurate
measurements of cloud height, density, and structure, in our
context. In contrast, traditional remote sensing techniques
often struggle with depth perception andmay introduce errors
in estimating cloud boundaries and vertical distributions.
While satellite-based methods are useful for large-scale
atmospheric monitoring, lidar remains the superior choice
for advanced meteorological studies, aviation safety, and
climate research where high-resolution cloud profiling is
essential.

The data collected by ceilometers is typically converted
into time-height plots of backscatter coefficients (commonly
referred to as backscatter profiles [4]), where the x-axis
represents time and the y-axis represents altitude [5]. These
backscatter profiles can be analyzed to detect the presence
or absence of clouds. Past studies in the literature have
explored the use of deep networks [6] for analyzing lidar
imagery [7]. However, the lack of publicly available datasets
hinders research in the field. This prompted us to collect and
release a novel dataset along with benchmark results on state-
of-the-art architectures.

The Cloud Detection Challenge, hosted by IEEE MetroX-
RAINE 2024, aimed to advance cloud detection leveraging
lidar-based ceilometer data. The challenge introduced a
novel dataset of backscatter profiles transformed into time-
height plots, inviting participants to develop state-of-the-art
binary classification models for cloud detection. Unlike
conventional imagery, these profiles provided unique insights
into atmospheric conditions, capturing variations in cloud
presence over time. Participants were tasked with surpassing
our benchmark using a deep network to outperform our
results in terms of accuracy, precision, recall, and F1
score [6].
For data acquisition, we employed a Lufft CHM 15k

lidar-based ceilometer, which collected measurements every
15 seconds. This device is designed to determine cloud
heights, penetration depths, coverage, vertical visibility, and
aerosol layers. It was positioned near San Giovanni La Punta
(Catania, Italy) at coordinates [37◦ 34’ 43.997’’ N, 15◦

6’ 11.002’’ E]. Data acquisition spanned from January 1,
2023, to March 15, 2023. Ground-truth labels were generated
using a high-resolution Weather Research and Forecasting
(WRF) model specific to the ceilometer’s location. The
resulting dataset poses a challenging benchmark for ana-
lyzing backscatter profiles and evaluating state-of-the-art
architectures for cloud detection.

Several teams from around the world participated in
the challenge, presenting solutions that leveraged advanced
techniques to address the dataset’s unique challenges. The
competition served as a platform for testing innovative
methods, fostering collaboration, and advancing the field of
atmospheric data analysis. This paper details the competi-
tion’s key aspects, highlights the diverse approaches adopted
by participating teams, and evaluates the performance of our
proposed solution in comparison to others.

The paper is structured as follows: Section II shows
some state-of-the-art methods in the field. Section III
provides a comprehensive overview of the cloud detection
challenge. Section IV details the employed dataset. Section V
describes the proposed baseline for the Cloud Detection
Challenge. Section VI illustrates the solutions proposed
by the participants. A detailed analysis and discussion of
the results are presented in the Section VII. Finally, the
Section VIII concludes the paper and highlights directions for
future work.

II. RELATED WORKS
This section is divided into two subsections, each address-
ing a different aspect of atmospheric detection. The first
subsection examines various lidar-based approaches for
cloud detection, outlining the key methodologies and tech-
nologies used in the literature. The second subsection
focuses on advancements in ceilometer-based atmospheric
monitoring, exploring data analysis techniques and models
designed to interpret backscatter profiles.

A. COMPARISON OF LIDAR-BASED CLOUD DETECTION
APPROACHES
Several approaches have been proposed for detecting clouds
using lidar-based techniques, with significant differences
in the type of instruments employed and the atmospheric
layers they probe. While our instrument leverages lidar-based
ceilometer systems to capture backscatter data from the atmo-
spheric boundary layer, other studies have employed alterna-
tive lidar configurations with distinct operational principles
and observational capabilities. The approach in [8] incor-
porates a superconducting nanowire single-photon detector
(SNSPD) in high-sensitivity atmospheric lidar, enhancing
detection of faint backscatter signals from high-altitude
clouds with minimal noise. However, these systems primarily
target themid-to-upper atmosphere and demand sophisticated
calibration to mitigate signal attenuation. In contrast, hybrid
radar-lidar methods, such as [9], integrate millimeter-wave
cloud radar with ground-based multi-wavelength lidar. While
radar provides superior penetration depth, lidar ensures finer
resolution at lower altitudes. However, these composite
systems face challenges in distinguishing drizzle from cloud
droplets and require co-located instrumentation, limiting
their spatial flexibility. Airborne laser scanning (ALS)
lidar, as demonstrated in [10], employs aircraft-mounted
pulsed lasers in the near-infrared spectrum to generate high-
resolution 3D cloud reconstructions. Despite its ability to
capture detailed cloud morphology, ALS is constrained by
operational costs, limited temporal resolution, and depen-
dency on flight schedules. Our tool differs from these
instruments by focusing on earth-to-satellite observations
using lidar-based ceilometer. Ceilometers operate at a single
wavelength to continuously monitor the lower atmosphere.
Their primary advantage lies in their ability to provide
near real-time, high-frequency sampling of the planetary
boundary layer (PBL), the atmospheric region most directly
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influenced by human activity and surface-level meteorolog-
ical processes. Unlike high-power research lidar systems,
ceilometers are optimised for detecting cloud base heights
and aerosol layers at altitudes ranging from a few tens
of metres to several kilometres. This capability makes
them particularly relevant for studying cloud formation
and dynamics in urban and industrial environments, where
localised emissions and thermal effects strongly modulate
atmospheric composition.

B. APPROACHES IN CEILOMETER-BASED ATMOSPHERIC
MONITORING
Backscatter profiles acquired by ceilometers have been
shown to be highly correlated in the presence of atmospheric
particulate matter, as demonstrated in previous studies [11],
[12]. In fact, the efficacy of ceilometer data in detecting
volcanic emissions has been notably exemplified by its
successful application during the 2010 eruption of the
Icelandic volcano Eyjafjallajökull [13].

Given its potential, the exploration of data analysis tech-
niques for the analysis of ceilometer-acquired data has been
a subject of discussion since the beginning of the DataMining
Project [14]. In fact, a milestone for the research community
emerged from the work of Wiegner et al. [15], wherein
an approach to calibrate measurements from a Jenoptik
CHM 15kx ceilometer was presented. Later, Arun et al. [16]
delved into the synergy between ground-based ceilometer
observations and satellite data from remote sensing sources
in their study. By combining these modalities, they aimed
to enhance the precision of cloud detection, highlighting
the evolving landscape of data fusion for atmospheric
analysis.

In [17], the authors proposed a technique for detecting
specific meteorological phenomena, such as fog and clouds,
using a lidar-based ceilometer. Themethodology involved the
application of classical machine learning methods, including
Support Vector Machines (SVM), as well as shallow neural
networks. These techniques used raw data obtained from
the ceilometer as predictive features, enabling the accurate
identification of atmospheric events. Similarly, in [18], the
authors undertook cloud classification by taking advantage of
both ceilometer data with sky images captured by a camera.
Within their study, a random forest approach was employed
to perform multi-class classification, effectively discerning
various cloud types. This integration of data sources facili-
tated comprehensive cloud identification. Sleeman et al. [19]
used lidar-based ceilometer data to detect the Planetary
Bounday Layer Height (PBLH) with the use of machine
learning techniques. In [4], they introduced an unsupervised
methodology for classifying meteorological occurrences,
leveraging k-means clustering. An autoencoder was trained
to learn a suitable representation of backscatter profiles,
subsequently organized into clusters. While demonstrating
promise, this technique was presented as a proof-of-concept.
Notably, the absence of labeled data and a comprehensive
evaluation hampered its full validation. Conversely, the study

in [7] addressed cloud detection through Fully Convolutional
Networks. In their approach, backscatter profiles were
provided into their model via a mask algorithm, and the
model was trained in a supervised fashion, as they labeled
a dataset of backscatter profiles. This dataset enabled an
in-depth quantitative performance analysis of their proposed
methodology, setting it apart from prior works in the
literature. For further reading, a comprehensive review of
cloud detection, including the use of ceilometer data, can be
found in [20].

The current literature introduces a variety of approaches
tackling several tasks based on ceilometer data using distinct
datasets. Although previous works have adopted classic
machine learning approaches, the nature of the data collected
in this paper (i.e., backscatter profiles as shown in Figure 1)
are better suited to be analysed with deep neural networks.
We want to highlight the difference between our dataset
and those available in the literature. Traditional remote
sensing systems using lidar technology are predominantly
satellite-based and acquire data from a top-down (satellite-
to-earth) perspective. Although these approaches have been
extensively studied and provide valuable atmospheric and
surface observations, they differ fundamentally from our
methodology, which adopts a bottom-up (Earth-to-satellite)
perspective. This inversion in the data acquisition paradigm
introduces a new and exciting aspect to cloud detection,
as the dataset we propose captures atmospheric dynamics
from a perspective rarely explored in the literature. Because
of this unique perspective, our dataset differs significantly
from existing datasets, making it new and ahead of its time.
The distinct nature of these data presents new challenges
and opportunities for the research community, motivating us
to propose a dedicated scientific challenge. Then, we aim
to promote advances in cloud detection methodologies
and improve the understanding of atmospheric phenomena
observed by ground-based lidar systems.

In this paper, we propose the results of Cloud Detec-
tion Challenge, in which teams from all over the world
have the opportunity to get in touch with a new dataset
of ceilometer backscatter profiles acquired in proxim-
ity of an active volcano. Particularly, this document
presents the solution of the best teams participating in the
challenge.

III. CLOUD DETECTION CHALLENGE
In this competition, participants are invited to tackle the task
of binary classification focused on cloud detection using a
novel dataset that was exclusively released for this challenge.
The dataset was built by converting raw data collected
by a lidar-based ceilometer into images. Images represent
backscatter profile labeled with binary annotations indicating
the presence or absence of clouds.

The goal of the proposed challenge1 was to encourage
teams around the world to develop innovative solutions

1https://iplab.dmi.unict.it/cloud-detection-challenge/
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FIGURE 1. Backscatter profile of 24-hour measurements taken on the 17th of June 2022. As explained in IV, the colour of the plot depends on the
intensity of the measured particle: intense blue means absence of particulate; red means intense presence of particulate. Best viewed in colour.

outperforming our baseline [21] performance of this new
dataset. The performance of the models was evaluated
using the following metrics: (i) accuracy; (ii) F1 score;
(iii) precision; (iv) recall. The winner has been determined
by the team with the best value across all metrics. In the
event of a tie, the values of precision and recall had higher
priority.

A. SIGNIFICANCE OF THE CHALLENGE
The Cloud Detection Challenge holds paramount importance
in computer vision applications and image analysis. The
ability to accurately identify the presence of clouds in
satellite imagery or landscape photographs carries profound
implications across various sectors, including meteorology,
environmental monitoring, agriculture, and satellite imaging.
By using a new dataset based on new types of data and,
therefore, new types of images, there is an opportunity
to increase research on this topic by integrating new
data sources with those already known. Precise cloud
classification is essential for understanding climate changes,
predicting weather phenomena, and optimizing agricultural
operations. The challenge not only calls for innovation in
developing advanced models but also provides an oppor-
tunity to make substantial contributions to scientific and
technological progress in strategic sectors dependent on
image analysis accuracy. By participating in this chal-
lenge, researchers and developers can showcase their skills
and abilities in computer vision, contributing to creating
solutions that push beyond current technological frontiers.
The results have a tangible impact on real-world appli-
cations, enhancing our understanding of the environment

and supporting informed decision-making across various
industries.

B. CRITERIA OF JUDGING A SUBMISSION
The evaluation of submissions in the Cloud Detection
Challenge was designed to ensure a fair and comprehensive
assessment of each proposed solution. Given the complexity
of lidar-based backscatter data, the criteria focused on both
the accuracy of predictions and the balance between the other
performance metrics. This approach aimed to highlight not
only the ability of the models to correctly classify cloudy vs.
clear skies but also their robustness in handling edge cases
and maintaining consistency across varying conditions. The
following criteria outline the specific metrics and their role in
determining the effectiveness of the submitted models.

1) Classification Accuracy: Precision in correctly distin-
guishing between the two classes is crucial. Accuracy
will be used as a starting point to assess the overall
model performance.

2) Precision and Recall: Precision indicates the propor-
tion of true positive predictions among all positive
predictions. Recall measures the proportion of true
positive predictions among all actual positive instances.
A good balance between precision and recall is
desirable, but their importance may vary depending on
the context of the problem.

3) F1 Score: The F1 score is the harmonic mean of
precision and recall. This metric provides a balance
between the two and can be particularly useful in
cases where minimizing both false positives and false
negatives is important.
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FIGURE 2. Visual representation of the data collection process.
Backscatter raw data is utilized to generate a time-height plotting of
backscatter coefficients (profile).

IV. DATASET
We used a Lufft CHM 15k ceilometer, a device based
on Light Detection and Ranging (LiDAR) technology. The
system operates by emitting short light pulses generated
by a solid-state laser into the atmosphere. These pulses
interact with aerosols, water droplets, and air molecules,
resulting in scattered light. A portion of this scattered
light, known as backscatter, is reflected back to the device
and serves as the primary data source for processing.
By measuring the time-of-flight of the laser pulses, the
device determines the distance to the scattering particles.
The reflected signal’s altitude profile is examined to derive
the raw backscatter intensity, β-raw. From this, the atten-
uated backscatter coefficient, β-att, is determined using a
calibration constant for accuracy. The ceilometer performed
measurements at intervals of 15 seconds, offering an accurate
assessment of atmospheric particle density. Leveraging signal
reflection, it was feasible to identify cloud cover layers.
Figure 2 provides a graphical depiction of the data acquisition
workflow.

Upon gathering raw data, relevant variables were nor-
malized using a scaling factor specific to the lidar-based
ceilometer. These variables were then utilized to create
backscatter profiles. In these profiles, the horizontal axis
represents time, while the vertical axis denotes particle
altitude, based on the backscatter coefficient. The plot’s color
gradient reflects particle density: deep blue indicates a lack of
particulates, whereas red signals high particulate presence.
The numerical scale spans from 0 to 5 · 10−6. As shown

in Figure 1, daily backscatter profiles were generated. Each
daily profile was then split in 1hr-long non-overlapping
windows, producing 24 individual profiles per day. Overall,
the dataset comprises 1568 images, each with dimensions of
150 × 1000, representing hourly measurements.
The generated profiles were annotated with the support of

the Weather Research and Forecasting (WRF) Model. The
WRF model is a high-resolution mesoscale system designed
for both research and operational weather forecasting. Its
workflow, displayed in Figure 3, includes two dynamic cores,
a data processing pipeline, and parallel computing support.
The model accommodates meteorological scales from tens
of meters to several thousand kilometers. With a spatial
resolution of 1× 1 km, it outperforms global models like the
Global Forecast System (GFS), which typically operates at
27 × 27 km. The GFS, provided by the National Center for
Atmospheric Research (NCAR), served as the primary input
for the WRF model [22].

The WRF model produces a netCDF file that encodes
a 3D spatial grid. Example outputs are shown in Figure 3
(Visual Examples Block). Latitude and longitude are aligned
with the x-axis and y-axis, while 40 pressure levels are
represented on the z-axis. The shown images differ in spatial
resolution and the quality of WRF outputs. The first image
has a resolution of 9 × 9 km, meaning that each point in
the spatial grid is 9 km apart from the next. This results in
a relatively coarse representation of atmospheric conditions,
as finer details of meteorological phenomena are not captured
at this scale. The second image, on the other hand, uses a
finer grid with a resolution of 3 × 3 km. This increased
level of detail is achieved through the nesting technique
within the WRF model. Nesting involves defining one or
more higher-resolution grids (called nested domains) within
a coarser-resolution grid (parent domain). In this case, the
3 × 3 km grid is nested within the parent domain of
9 × 9 km. During this process, the WRF model integrates
the meteorological conditions from the parent domain to
enhance the representation of atmospheric phenomena on a
local scale, thus providing more accurate forecasts in areas
of particular interest. Finally, the third image shows data
obtained at a resolution of 1 × 1 km, which is nine times
more precise than the initial resolution. At this stage, nesting
is further refined by creating a third-level domain, allowing
for the capture of very fine meteorological details, such as
local variations in temperature, wind, and precipitation. This
high-resolution output is particularly useful in contexts where
it is necessary to predict small-scale atmospheric phenomena,
such as urban micro-climates, intense precipitation events,
or wind variations in mountainous regions. Focusing on
the ceilometer’s location, data for cloud presence at each
pressure level was extracted. This enabled the determination
of hourly cloud cover above the target area, facilitating the
generation of ground-truth labels for each backscatter profile.
The proposed dataset was split into train, validation and
test, with the following proportions: 49% (769 samples),
21% (329) and 30% (470), respectively, with 1050 true class
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FIGURE 3. Workflow of the WRF model. Outputs from the initial two steps are inputs for the final step. Global data from the GFS forms the first input.
Visual examples blocks show some outputs of the WRF model. Details in Section IV.

samples. The participants chose to use other configurations
to train the proposed model, partly because the test set was
released later.

V. BASELINE
ResNet-50 was chosen as the best architecture in the binary
classification task, presented in [21] in which this baseline
solution is presented. The dataset is divided into training
and validation sets in a 70-30 ratio, and preprocessing steps
include resizing, normalization, and data augmentation to
enhance model generalization. The ResNet-50 model, pre-
trained on ImageNet, is adapted with a custom classification
head to suit the binary task.

A. METHODOLOGY
The proposed approach uses a convolutional neural network
(CNN) approach for classification, leveraging the ResNet-50
architecture pretrained on ImageNet.

B. DATA PREPROCESSING
Dataset Structure: The dataset is organized into train and
validation directories, each containing two subfolders (true
and false). The split ratio is 70% - 30%. Transformations:

• Resized to 224 × 224 pixels.
• Resizing crop to 224 pixels.
• Random horizontal flips (probability: 50%) to increase
diversity.

• Normalized using the ImageNet mean ([0.485, 0.456,
0.406]) and standard deviation ([0.229, 0.224, 0.225]).

C. MODEL ARCHITECTURE
Base Model: ResNet-50, a 50-layer deep CNN, is utilized
as the backbone, as represented in Figure 4. Its pretrained
weights on ImageNet facilitate robust feature extraction.
Custom Head: The fully connected layers are replaced or
extended to suit the binary classification task, ensuring
compatibility with the dataset while preserving essential
learned features.

D. TRAINING STRATEGY
Device: Training is performed on a GPU-enabled Google
Colab Pro instance. Loss Function: CrossEntropyLoss is
used to optimize model predictions for binary classification.
Optimizer: Stochastic Gradient Descent (SGD) is employed,
enabling controlled weight updates via adjustable learning
rates. Metrics: Performance is evaluated using accuracy,
F1-score, precision, and recall.

E. EXPERIMENTAL SETUP
Hardware: Google Colab Pro provides GPU acceleration,
significantly reducing training time and computational over-
head. Data Access: The dataset resides in Google Drive,
mounted as a root directory within the Colab environment
for seamless integration. Hyperparameters: Batch size and
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FIGURE 4. Baseline architecture for binary cloud classification: the diagram illustrates a ResNet-50 pre-trained network, employing residual blocks for
deep learning of spatial and temporal features from backscatter profiles acquired via ceilometer. The final output is a binary classification, indicating
‘True’ or ‘False’ for cloud presence (figure adapted from [23]).

FIGURE 5. Registered participants by affiliation country.

FIGURE 6. Number of participating teams per country.

learning rates are defined but may vary across iterations. The
number of epochs and early stopping criteria ensure optimal
convergence.

VI. PARTICIPANT SUBMISSIONS TO THE CHALLENGE
A total of 11 teams from all over the world registered for
the challenge. In particular, 63.6% of the participants are
single researchers, while 36.4% are research groups. Figure 5
shows the countries of origin of the teams registered to the

challenge, while Figure 6 shows the number of teams from
the respective country. We selected the top two solutions
based on (i) the absolute values of the evaluation metrics
and (ii) the best-proposed architecture. In the following
subsection, we offer details of the solutions proposed by each
participants, with a brief presentation, the methodology, and
the adopted experimental.

A. ALPHA RESEARCH GROUP-UNVERSITY OF TURIN
(UNITO)
Alpha Research Group (represented by Bruno Casella -
University of Turin) used a pretrained version of the Vision
Transformer (ViT) [24] as shown in Figure 7. The idea behind
using a transformer architecture comes from the intrinsic
nature of the dataset, as it contains both spatial and temporal
features. Taking inspiration from the BEVT paper [25], which
proposes a BERT [26] pretraining of Video Transformers
and states that for difficult actions, the spatial priors learning
should be decoupled from the temporal priors learning, the
UniTO researcher hypothesized that temporal features could
benefit from spatial features and vice versa.

1) METHODOLOGY
Each image is resized to 384 × 384. Training and validation
data are normalized (mean and standard deviation of 50%).
The pretrained ViT was trained by minimizing the binary
cross-entropy loss with mini-batch gradient descent using the
SGD optimizer, with a learning rate of 0.0001, momentum
of 0.7, weight decay of 0.000001, and batch size was 12.
An early stopping criterion with patience 1 and delta 0 was
set for a maximum of 60 training epochs. As augmentation
techniques, the participant adopted random horizontal flips,
applied with a probability of 50%.

2) EXPERIMENTAL SETUP
The Alpha Research Group used a dedicated server with
an Intel Xeon Processor (Skylake, IBRS, 8 sockets of
one core) and one Tesla T4 GPU to run the experiments.
PyTorch 2.0.1 was adopted as deep learning framework.
Each epoch required around 2 minutes. The validation loss,
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FIGURE 7. Alpha Research Group’s proposed architecture.

FIGURE 8. Koexai’s proposed architecture.

in combination with the early stop criterion, was used as the
evaluation metric.

B. KOEXAI (INDUSTRIAL SECTOR)
This section highlights Koexai’s contribution to the Cloud
Detection Challenge, focusing on the innovative approach
employed for the automatic classification of atmospheric
conditions using ceilometer data. The challenge aimed to
create a robust model for accurately differentiating between
cloudy and clear skies based on images created from data
captured by these devices. To achieve this, Koexai designed
a dual-stream deep learning architecture that processes both
RGB and grayscale images to enhance feature extraction and
improve classification performance.

1) DATA PREPARATION
To prepare the dataset for training and validation, the original
dataset was split into 80% for training and 20% for validation.
This division was performed while ensuring a balanced
distribution of target classes, utilising the Bhattacharyya
distance [27] to minimise biases. Although clouds typically
cover only a portion of each image, labels indicating the
presence or absence of clouds were provided at the image
level. This highlights an opportunity for improving automatic
classification by refining the dataset labelling, in addition
to enhancing the classification model itself. No domain-
specific transformations were applied to the dataset during
this process.

FIGURE 9. Graphical results for each team.

2) MODEL ARCHITECTURE
The proposed model utilises two ResNet-101 [28] backbones
operating in parallel: one dedicated to processing RGB
images and the other to handling their grayscale counterparts,
as shown in Figure 8. This dual architecture allows for a more
comprehensive feature extraction from the data, with the
RGB stream capturing colour and texture details, while the
grayscale stream emphasises structural and contrast-based
attributes. The ceilometer images were re-scaled to 224 ×

224 pixels to align with the input format of the ResNet-101
models. The last 1024 feature maps from each backbone were
then average pooled and concatenated. These concatenated
features were subsequently passed through a multi-layer
perceptron (MLP) consisting of three fully connected hidden
layers with 512, 256, and 64 neurons, employing LeakyReLU
activation functions. The architecture culminates in a final
sigmoid activation function for binary classification.

3) TRAINING STRATEGY
The model was implemented using PyTorch and trained for
500 epochs with the Adam optimizer [29], utilising default
parameters (β1 = 0.9 and β2 = 0.999). To enhance training
efficiency, several techniques were employed, including
an adaptive learning rate, early stopping criteria, gradient
clipping, and weight decay set to (1× 10−5). The weights of
both ResNet-101 networks were initialised with pre-trained
weights from ImageNet and fine-tuned separately to adapt
them to the specific classification task.

4) RESULTS AND DISCUSSION
Although quantitative metrics such as accuracy and F1-
score could not be computed on the test set due to
challenge constraints, these metrics were assessed on the
validation set. The results demonstrated that the model
effectively distinguished between cloudy and clear skies, with
minimal signs of overfitting. The dual-stream architecture
outperformed single backbone models by capturing a wider
range of visual features and leveraging information from
both channels to enhance overall model quality. Koexai’s
innovative approach highlights the potential of dual-stream
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FIGURE 10. Confusion matrix for each team solution: [fist] Alpha Research Group’s solution, [second] Koexai’s solution, [third] Baseline solution.
0 stands for label ‘‘False’’, 1 for label ‘‘True.’’

TABLE 1. Comparison of the computational needs of each proposed
solution.

architectures in improving cloud detection capabilities.
The model’s robustness suggests that it is well-suited for
integration into automated weather monitoring systems and
can be further adapted for other meteorological tasks, such as
cloud type classification or atmospheric anomaly detection.

VII. RANKING AND DISCUSSION
The Cloud Detection Challenge aimed to foster innovative
approaches for analyzing lidar-based ceilometer data, push-
ing the boundaries of binary cloud detection. The results
obtained from participating teams reveal key insights into
the efficacy of diverse architectures and methodologies
when applied to a novel and complex dataset. This section
provides a comprehensive analysis of the results obtained
from the challenge. A focus is placed on performance
metrics, architectural choices, and the broader implications
of the proposed solutions. Figure 9 shows the key values
for each metric for each team participating in the compe-
tition, while Figure 10 shows all confusion matrices for
each proposed solution. Each Figure includes the baseline
results.

A. COMPUTATIONAL NEEDS
The computational needs associated with each of the
proposed approaches, as delineated in Table 1, can be
characterized by several markedly distinct facets. Koexai’s
approach is associated with a substantially longer training
time (3 hours, 59 minutes, and 12 seconds) when juxtaposed
with the training durations of the Alpha Research Group
and Baseline methods, which are approximately 20 minutes,

28 seconds and 26 minutes, 39 seconds, respectively.
This pronounced disparity in training times is primarily
attributable to the divergent training strategies adopted by
the respective approaches. Specifically, Koexai’s proposed
method required complete training of the architecture from
its initial, uninitialized state. In contrast, both the Alpha
Research Group and the Baseline approaches capitalized
on the benefits of employing pre-trained architectures.
In addition to the differences in overall training duration,
a significant discrepancy is evident in the number of
training epochs implemented across the approaches. Koexai’s
proposed approach, which engaged in full training from
scratch, was run for 500 epochs, while the Alpha Research
Group approach required only 10 epochs and the Baseline
approach was limited to 60 epochs. These lower epoch counts
are not simply indicative of a truncated training process but
rather are the result of the employment of an early stopping
criterion, used to avoid overfitting during the training process.
The third aspect warranting detailed consideration is the
influence of the computational hardware on the overall
training process. Koexai used a system configured with
an Intel Core i5 8th generation CPU and an NVIDIA
GTX 1080 Ti GPU. Both Alpha Research Group and the
Baseline approaches were executed on systems that utilized
Intel Xeon CPUs in conjunction with NVIDIA GPUs that
are particularly well-suited for deep learning applications,
such as the Tesla T4 GPU for the Alpha Research Group
and the Tesla V100 GPU for the Baseline. Koexai, by virtue
of its full-from-scratch training regimen and extended epoch
count, naturally incurs a higher computational cost relative
to the pre-trained models utilized by the Alpha Research
Group and Baseline approaches. Moreover, the disparities
in hardware further contribute to the observed variations in
training durations.

B. PERFORMANCE SUMMARY
The challenge dataset provided a benchmark for state-
of-the-art solutions, with the baseline model achieving
89.57% accuracy, 92.73% F1-score, 89.82% precision, and
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95.84% recall. These metrics served as a reference point for
evaluating the success of participant submissions.

Among the participants:

• Koexai Team: Surpassed the baseline in recall, indicating
a strong ability to correctly identify true positive
cases (cloudy skies). However, other metrics, including
accuracy, F1-score, and precision, remained slightly
below the baseline.

• Alpha Research Group: Delivered competitive results
with a transformer-based approach, but the performance
did not exceed the baseline in any key metric.

These outcomes highlight the difficulty of outperforming the
robust baseline, which leveraged deep learning to effectively
capture the temporal and spatial nuances of the ceilometer
data. In terms of the various metrics, we can say that
overall accuracy was high across all solutions, reflecting
their ability to classify samples as cloudy or clear skies
effectively. However, no model consistently outperformed
the baseline, suggesting that while general predictions were
reliable, subtle challenges such as ambiguous atmospheric
conditions may have limited further improvements. Precision
remained strong for both the baseline and participant models,
indicating that most predicted cloudy conditions were indeed
correct, although some solutions that prioritized recall saw a
slight trade-off in precision. Recall, on the other hand, was a
standout metric for the Koexai team, whose dual-streamCNN
architecture effectively leveraged both RGB and grayscale
information to enhance sensitivity to cloudy conditions, even
in challenging scenarios. Lastly, the F1-score highlighted the
baseline’s strength, as it remained unbeaten, showcasing its
ability to balance the correct identification of clouds while
minimizing false positives.

The varied results reflect both the strengths and limitations
of each approach:

• Baseline Superiority: The baseline model’s perfor-
mance underscores the effectiveness of architectures
carefully tailored to the dataset’s unique characteristics.

• Koexai’s Precision-Recall Tradeoff: By excelling in
recall, the Koexai team demonstrated the importance of
architectural innovation for addressing false negatives.
However, this came at the cost of reduced precision,
suggesting areas for future improvement.

• Challenges in Architectural Optimization: The
transformer-based solution proposed by Alpha Research
Group showed the best results but struggled to
outperform the baseline. This indicates the need for
further refinement in handling the dataset’s temporal and
spatial complexities.

While the overall performance was impressive, a few
limitations became apparent. For instance, differences in data
preprocessing approaches, such as normalization and aug-
mentation, had a noticeable impact on the model outcomes.
Fine-tuning these steps could lead to meaningful improve-
ments. Additionally, the complexity of certain architectures,

like transformers, introduced risks of overfitting, especially
given the relatively small dataset size.

C. DISCUSSION
The analysis of the results achieved by participating teams
highlights the complexity of the proposed challenge and
the diverse methodologies employed to tackle the binary
classification of backscatter images. While all solutions
demonstrated promising results, nonemanaged to outperform
the baseline metrics, underscoring the effectiveness of the
baseline framework as a robust starting point.

Among the participants, the Koexai team stood out by
leveraging a dual-stream architecture, which significantly
improved recall. This result demonstrated the model’s ability
to accurately identify cloudy conditions, even in challenging
scenarios. However, this improvement came at a slight cost
to overall precision, indicating room for further optimization
to balance these metrics. Similarly, the transformer-based
approach proposed by the Alpha Research Group showcased
the potential of attention mechanisms for analyzing complex
data, effectively capturing both temporal and spatial features
present in the backscatter profiles. Despite these strengths,
the difficulty of surpassing the baseline highlights the
challenges posed by the dataset’s unique characteristics
and the inherent complexity of backscatter data. Certain
limitations were evident in the proposed solutions, such as the
lack of ensemble approaches that could combine the strengths
of different models and the absence of advanced strategies to
handle class imbalances in the dataset.

The high accuracy and F1-scores observed across most
solutions demonstrate the value of backscatter profiles for
atmospheric analysis, with potential applications in areas
like environmental monitoring and precision agriculture. The
ability to distinguish between clear and cloudy conditions
with high accuracy reinforces the role of lidar-based data in
complementing traditional weather prediction methods.

Looking ahead, future iterations of the challenge could
explore multi-class classification to identify specific cloud
types or incorporate complementary meteorological data,
such as temperature or humidity, to enhance predic-
tive capabilities. Furthermore, leveraging semi-supervised
or unsupervised learning techniques could maximize the
dataset’s utility and further address the challenges of class
imbalance.

Overall, the results validate the competition framework
as a valuable benchmark for advancing innovation in
atmospheric data analysis. At the same time, they pro-
vide insightful directions for future improvements and
refinements, paving the way for more robust and versatile
solutions.

VIII. CONCLUSION AND FUTURE WORKS
The Cloud Detection Challenge has demonstrated the poten-
tial of lidar-based ceilometer data for advancing binary
cloud detection, emphasizing both the opportunities and
challenges inherent in this domain. The outcomes showcase
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the capability of state-of-the-art deep learning methods to
extract meaningful insights from backscatter profiles, which
provide unique temporal and spatial details of atmospheric
conditions. While the baseline model set a high standard for
accuracy, F1-score, precision, and recall, the varied perfor-
mances of the participant teams highlight the complexity of
the task and the room for innovation.

Despite the notable successes, the challenge underscored
areas for improvement. Differences in preprocessing strate-
gies, risks of overfitting in complex architectures, and the
dataset’s inherent characteristics all posed obstacles that
prevented any solution from consistently outperforming the
baseline. These findings suggest that future work should
explore advanced preprocessing techniques, ensemble meth-
ods, and strategies to handle class imbalances effectively.
Additionally, integrating complementary data sources, such
as meteorological or atmospheric parameters, could further
enhance model performance and applicability.

Looking forward, the insights gained from this challenge
open the door to numerous exciting directions. Expanding
the task to multi-class classification, incorporating additional
environmental variables, and exploring semi-supervised
learning could significantly enhance the versatility and
robustness of these models. The advancements achieved
through this competition not only contribute to the field of
atmospheric monitoring but also provide a foundation for
broader applications in environmental analysis and beyond.
By building on these results, future efforts can continue to
push the boundaries of innovation in cloud detection and
related domains.
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