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Abstract
Cloud detection is fundamental for accurate weather monitoring, often achieved through remote sensing technology, such
as satellite imagery or radar. This study explores the use of lidar ceilometer backscatter data, a rich but noisy source of
atmospheric information, to enhance cloud detection. Leveraging data acquired from a Lufft CHM 15k ceilometer over
three months near Mount Etna, Italy, we gathered a novel dataset comprising time-height plots derived from backscatter
profiles. The Weather Research and Forecasting (WRF) model was used for ground-truth data labeling, ensuring reliable
model validation.We benchmarked state-of-the-art deep learning architectures, includingCNN-basedmodels (e.g., ResNet50,
VGG16, InceptionV3, EfficientNet) and the Vision Transformer (ViT), on our collected dataset. Among these, ResNet50
achieved the highest accuracy (89.57%), closely followed by ViT (89.36%), showcasing the efficacy of residual learning and
transformer-based approaches in extracting complex patterns from atmospheric data. Our results highlight the potential of
lidar-based systems for accurate cloud detection, complementing other remote sensing technologies. Our work contributes
to the field by introducing a publicly available dataset and providing comprehensive benchmarking results that establish a
baseline for future research. This study also opens avenues for broader applications of ceilometer data, such as the detection
of pollutants and other atmospheric phenomena. Our dataset is publicly available at https://zenodo.org/records/10616434.
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1 Introduction

Monitoring and understanding cloud formations and their
dynamics are critical tasks in meteorology, as clouds play
a pivotal role in weather prediction, climate modeling, and
atmospheric studies. Clouds influence the Earth’s energy
balance, modulate temperatures, and impact precipitation
patterns. Traditionalmethods for cloud observation often rely
on satellite imagery and ground-based radar systems. This
work utilizes data from a lidar-based ceilometer, an advanced
remote sensing instrument capable of measuring cloud base
heights anddetecting atmospheric aerosols throughbackscat-
ter analysis of a modulated light beam emitted into the sky.

Ceilometers offer distinct advantages over other remote
sensing devices, providing continuous, high-resolution ver-
tical measurements of cloud and aerosol distribution. This
capability makes them particularly valuable for studying
rapid changes in atmospheric conditions and for detect-
ing phenomena that are challenging to observe through
satellites, such as low-altitude clouds or localized aerosol
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concentrations. Our study focuses on leveraging these unique
capabilities to enhance cloud detection using state-of-the-art
deep neural networks.

To better contextualize the role of ceilometers in cloud
detection, we briefly discuss alternative lidar-based methods
and their characteristics. Our approach employs lidar-based
ceilometers for continuous measurement, real-time moni-
toring of the lower atmosphere, specifically focusing on
earth-to-satellite observations. Unlike high-sensitivity lidar
systems [1], which integrate SNSPD technology to detect
faint backscatter signals from high-altitude clouds with min-
imal noise, ceilometers are optimized for tracking cloud
base heights and aerosol layers within the Planetary Bound-
ary Layer (PBL). While hybrid radar-lidar techniques [2]
combine millimeter-wave radar and multi-wavelength lidar
for improved penetration and resolution, they require co-
located instrumentation, limiting their deploymentflexibility.
Similarly, Airborne Laser Scanning (ALS) [3] provides high-
resolution 3D cloud morphology but is constrained by high
operational costs and limited temporal coverage. In con-
trast, ceilometers operate at a single wavelength, offering a
cost-effective, high-frequency sampling of atmospheric pro-
cesses, making them particularly suitable for studying cloud
dynamics in urban and industrial environments, where local
emissions and surface heating play a crucial role. These
comparisons highlight the unique advantages of ceilometers
in providing continuous, cost-effective, and high-frequency
atmospheric observations, making them particularly relevant
for cloud monitoring in urban and industrial environments.

While existing approaches have utilized lidar-based
imagery in combination with machine learning models [4],
the availability of publicly accessible datasets remains lim-
ited, creating a barrier for broader research and development
in this field. To address this gap, our study introduces a
newly curated dataset comprising backscatter profiles. Our
new dataset differs significantly from existing cloud detec-
tion datasets in the literature. Traditional lidar remote sensing
systems predominantly follow a satellite-to-earth (top-down)
perspective, whereas our approach adopts a bottom-up
(Earth-to-satellite) acquisition method. This inversion in the
data collection paradigm captures atmospheric dynamics
from a rarely explored viewpoint, introducing novel chal-
lenges and opportunities for cloud detection.

This dataset represents a challenging benchmark for cloud
detection due to its inclusion of diverse atmospheric condi-
tions and varying cloud types observed around Mount Etna,
an area known for its complex meteorological phenomena.

Ground-truth labeling of the dataset was performed using
a high-resolution Weather Research and Forecasting (WRF)
model, providing reliable reference data for model training
and evaluation. Our study aims to provide a comprehen-
sive performance benchmark for cloud detection on this
dataset using several state-of-the-art deep learning architec-

tures, including both convolutional neural networks (CNNs)
and transformer-based models. Specifically, we evaluated
VGG16 [5], ResNet50 [6], InceptionV3 [7], EfficientNet [8],
and the Vision Transformer (ViT) [9]. Results indicated that
ResNet50 achieved the highest accuracy among CNNs at
89.57%, while the transformer-based ViT reached a compa-
rable performance of 89.36%.

The main contributions of this work are as follows:

• Introduction of a novel dataset We present a new dataset
of lidar ceilometer backscatter profiles, collected over a
three-month period near Mount Etna, Italy. This dataset,
characterized by high temporal resolution and diverse
atmospheric conditions, serves as a valuable benchmark
for cloud detection and atmospheric studies.

• Comprehensive benchmarking of state-of-the-art mod-
els We evaluate the performance of cutting-edge deep
learning architectures, including CNN-based models
(ResNet50, VGG16, InceptionV3, EfficientNet) and the
Vision Transformer (ViT). This benchmarking provides
a robust baseline for cloud detection task using lidar
backscatter data.

• High accuracy results Among the tested models,
ResNet50 achieved thehighest accuracy (89.57%), closely
followed by ViT (89.36%). These results highlight
the efficacy of residual learning and transformer-based
approaches in analyzing complex atmospheric patterns.

• Support for future research By making the dataset
publicly accessible and offering detailed performance
benchmarks, this work lays the foundation for future
advancements in cloud detection and lidar-based atmo-
spheric research.

• Broader application potential The dataset and method-
ology introduced in this study open new opportunities
for leveraging lidar ceilometer data to detect other atmo-
spheric phenomena, such as aerosols, pollutants, and
volcanic emissions.

These contributions represent a significant step forward
in utilizing lidar-based systems and advanced deep learning
techniques for accurate and scalable atmosphericmonitoring.
This work is an extension of the work presented in [10] by
the authors. It includes a more in-depth analysis of the state-
of-the-art, a larger number of experiments and an in-depth
and detailed comparison of results, not present in [10].

The paper is structured as follows: Sect. 2 reviews themain
contributions in the existing literature. Section3 describes the
proposed methodology and outlines the processes for dataset
acquisition, collection, and preparation. Experimental results
are presented in Sect. 4. Section5 offers an in-depth analysis
of the findings, discusses the limitations of the work, and
highlights key observations. Finally, Sect. 6 concludes the
paper.
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2 Related works

For a comprehensive review of cloud detection, including the
use of ceilometer data, we invite the readers to refer to [11].

Backscatter profiles acquired by ceilometers have been
shown to be highly correlated in the presence of atmospheric
particulate matter, as demonstrated in previous studies [12,
13]. The efficacy of ceilometer data has also been instrumen-
tal in detecting volcanic emissions during the 2010 eruption
of the Icelandic volcano Eyjafjallajökull [14].

Given its potential, the exploration of sophisticated data
mining techniques for the analysis of ceilometer-acquired
data has been a subject of discussion since the inception
of the Data Mining Project [15]. In pursuit of this objec-
tive, a noteworthy contribution to the research community
emerged from the work of Wiegner et al. [16], wherein an
approach to calibrate measurements from a Jenoptik CHM
15kx ceilometer was presented. Later, Arun et al. [17] delved
into the synergy between ground-based ceilometer observa-
tions and satellite data from remote sensing sources in their
study. By combining these distinct datasets, they aimed to
enhance the precision of cloud detection, highlighting the
evolving landscape of data fusion for atmospheric analysis.

In [18], the authors proposed a technique for detect-
ing specific meteorological phenomena, such as fog and
clouds, using a lidar-based ceilometer. The methodology
involved the application of classical machine learning meth-
ods, including Support Vector Machines (SVM), as well as
shallow neural networks. These techniques leveraged raw
data obtained from the ceilometer as predictive features,
enabling the accurate identification of atmospheric events.
Similarly, in [19], the authors undertook cloud classification
by taking advantage of both ceilometer data with sky images
captured by a camera. Within their study, a random forest
approachwas employed to performmulti-class classification,
effectively discerning various cloud types. This integration
of data sources facilitated comprehensive cloud identifica-
tion. In [20], ceilometer data have been utilized to evaluate a
federated learning approach incorporating both labeled and
unlabeled samples in a semi-supervised setting. Thismethod-
ology aims to enhance model performance by leveraging
feature extraction from unannotated data, contributing to
the broader research on privacy-preserving machine learning
for Earth observation applications. Sleeman et al. [21] used
lidar-based ceilometer data to detect the Planetary Bound-
ary Layer Height (PBLH) with the use of machine learning
techniques. In [22], they introduced an unsupervisedmethod-
ology for classifyingmeteorological occurrences, leveraging
k-means clustering. An autoencoder was trained to learn a
suitable representation of backscatter profiles, subsequently
organized into clusters. While demonstrating promise, this
technique was presented as a prototype proof-of-concept.
Notably, the absence of labeled data and a comprehensive

evaluation hampered its full validation. Conversely, the study
in [4] addressed cloud detection through Fully Convolu-
tional Networks. In their approach, backscatter profiles were
provided into their model via a mask algorithm, and the
model was trained in a supervised fashion, as they labeled
a dataset of backscatter profiles. This dataset enabled an in-
depth quantitative performance analysis of their proposed
methodology, setting it apart from prior works in the liter-
ature. An et al. [23] developed a cloud detection algorithm
based on FY-3E satellite infrared channels for early morning
observations. Their method utilizes dynamic thresholds and
auxiliary data (such as SST, LST, and snow cover masks)
to adjust for varying land surface conditions and improve
detection accuracy. In contrast, Li et al. [24] proposed a
Residual Dual U-Shape Network (RD-UNet) with improved
skip connections, which effectively integrates multi-scale
features to better detect thin clouds and refine cloud bound-
aries. Although both approaches rely on satellite imagery,
our work diverges by employing ceilometer lidar backscat-
ter data, offering a bottom-up perspective that captures high
temporal resolution and detailed vertical structure infor-
mation. Our system uses lidar-based ceilometers to gather
backscatter data primarily from the atmospheric boundary
layer. Conversely, other research efforts have adopted dif-
ferent lidar setups, each with unique functional mechanisms
and observational strengths. Themethod described in [1] fea-
tures a high-sensitivity atmospheric lidar system equipped
with a Superconducting Nanowire Single-Photon Detec-
tor (SNSPD), which improves the identification of weak
backscatter signals from upper-atmosphere clouds while
minimizing noise. Nonetheless, such systems are mainly
designed for mid-to-high atmospheric layers and require
intricate calibration techniques to address signal degradation.
Alternatively, hybrid radar-lidar approaches, such as the one
in [2], mergemillimeter-wave cloud radar with ground-based
lidar operating atmultiplewavelengths. In these setups, radar
excels at deep penetration, whereas lidar provides finer detail
at lower elevations. However, these combined systems strug-
gle to differentiate between drizzle and cloud particles and
rely on co-located instruments, restricting their deployment
flexibility. Airborne Laser Scanning (ALS) lidar, exemplified
in [3], uses aircraft-mounted, pulsed near-infrared lasers to
construct high-resolution, three-dimensional representations
of cloud structures. Although effective in capturing cloud
morphology,ALS faces limitations due to its high operational
expenses, restricted temporal coverage, and reliance on flight
schedules. Our system stands apart by employing ceilome-
ters for ground-to-satellite measurements. These instruments
operate at a single wavelength and offer continuous monitor-
ing of the lower atmosphere. Their key strength lies in their
ability to deliver real-time, high-frequency measurements of
the Planetary Boundary Layer (PBL)-the atmospheric zone
most affected by surface-level weather and human-induced
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changes.Unlike powerful research lidar systems, ceilometers
are tailored for monitoring cloud base altitudes and aerosol
concentrations within a vertical range spanning from a few
dozen meters to several kilometers. This makes them espe-
cially suitable for examining cloud behavior and evolution in
urban and industrial settings, where local emissions and heat
exchanges significantly influence atmospheric properties.

The current research landscape demonstrates diverse
approaches leveraging ceilometer data, often relying on dis-
tinct datasets and traditional machine learning methods (e.g.,
SVM). However, the complexity of backscatter profiles, as
collected in this study, makes them more suitable for deep
neural networks. To address gaps in the existing literature,
this work introduces a high-resolution dataset tailored for
deep learning applications in cloud detection. Collected near
an active volcano, this dataset captures unique and challeng-
ing atmospheric conditions, enabling rigorous benchmarking
of advanced models and fostering future research. In this
paper, we benchmark state-of-the-art deep learning mod-
els using this novel dataset, offering valuable insights and
resources for the scientific community.

3 Proposedmethod

This section outlines the proposed approach for collecting
and labeling the dataset obtained using a lidar-based ceilome-
ter. Data were acquired by deploying a dedicated measuring
instrument, commonly utilized in the state-of-the-art for
atmospheric profiling (the ceilometer).

Data collection occurred between January 2023 and mid-
March 2023. This period was characterized by a series of
atmospheric perturbations, leading to a more balanced and
diverse dataset. The data acquisitionwas conducted on a daily
basis using the lidar-based ceilometer, strategically located
near San Giovanni La Punta (CT), Italy, at the following
coordinates: [37◦ 34’ 43.997" N, 15◦ 6’ 11.002" E].

3.1 Ceilometer

Ceilometers are widely employed for various meteorolog-
ical applications, with two primary configurations being
most common. In the rotating transmitter design, a projec-
tor sweeps the sky with a modulated light beam, while a
detector, placed at a known distance and pointed vertically,
detects reflections when the light intersects a cloud base
directly overhead. This reflection is captured, and the projec-
tion angle at the time of detection is recorded. Conversely, in
the scanner-receiver setup, the projector remains stationary
and emits a vertical modulated beam. A parabolic detector,
positioned at a predetermined distance, moves to scan the
beam in both upward and downward directions, capturing
light reflected by the cloud base and recording the vertical

intersection angle. Both configurations provide essential data
for determining cloud base height using triangulation.

In this study, we utilized a Lufft CHM 15k ceilometer,
which leverages LiDAR (Light Detection and Ranging) tech-
nology, as depicted in Fig. 1. This device emits short light
pulses from a solid-state laser microchip, which are scat-
tered by particles such as aerosols, water droplets, and other
molecules in the atmosphere. The portion of light reflected
back, termed backscatter, is analyzed by the ceilometer. By
measuring the time taken for the laser pulses to return, the
device determines the distance to the scattering particles. The
height profile of the reflected signals is then used to derive the
backscatter intensityβ-raw,which, with the aid of a valid cal-
ibration constant, is converted into the attenuated backscatter
coefficient β-att.

From this information, various atmospheric parameters
are determined, including cloud height and aerosol layer
distributions. The detection mechanism employs photon
counting to ensure precise measurement. The narrow band-
width of the laser allows for a roughly 1 nm optical filter
to be placed in front of the detector, reducing background
noise significantly. Signal averaging is employed to improve
the signal-to-noise ratio, which is crucial for lidar-based
measurements and for obtaining detailed aerosol profiles.
Compared to analog measurement methods, this approach
offers superior sensitivity and accuracy.

The casing of the ceilometer consists of a dual-layered
stainless aluminum structure, with the outer shell designed to
shield the inner casing, which houses the measurement unit,
from solar radiation, wind, rain, and snow. A protective lid
prevents dirt and precipitation from entering, and a window
allows the laser beam to exit and re-enter the instrument.
Inside the lid, a partition separates the emission zone from
the sensitive receiving area, while an air baffle directs airflow
from internal fans over the glass panel of the inner casing to
keep it clean and functional.

3.2 Data collection & processing

Theceilometer carriedoutmeasurements every15s, enabling
precise quantification of atmospheric particle concentration.
Byanalyzing the reflected signals, cloud layer coverage could
be determined. The selected ceilometer generates and pro-
cesses a substantial volume of raw data, as shown in Table 1.
Figure1 illustrates the data collection procedure.

Once the raw data were acquired, the parameters of inter-
est were normalized using a specific calibration factor for
the lidar-based ceilometer. Several parameters contributed to
constructing backscatter profiles. These profiles were plot-
ted with time represented on the x-axis and particle height
(reflected in the backscatter coefficient) on the y-axis. The
plot’s colors indicate the intensity of the measured particles:
deep blue signifies minimal particulate presence, while red
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Table 1 Complete list of all
parameters determined by the
Lufft CHM 15k ceilometer from
the backscatter

Parameter Type Unit Description

Time Double Secs End point of the measurement (UTC)

Range Float m Measurement distance of the device (independent of

direction and height of installation location)

Range_hr Float m Measurement distance of the device for high resolution

Layer Fnt – Layer index

Latitude Float ◦ Latitude of the installation location

Longitude Float ◦ Longitude of the installation location

Azimuth Float ◦ Azimuth angle of the device

(direction of the laser indicator)

Zenith Float ◦ Zenith angle of the device

(direction of the laser indicator)

Altitude Float m Height of installation of the device above sea level

Wavelength Float nm Wavelength of the laser in nm

Average_time Int ms Average time per recording

Range_gate Float m Spatial resolution of the measurement

Range_gate_hr Float m Spatial resolution of the high-resolution measurement

Life_time Int h Propagation time of the laser

Error_ext Int – 32-bit status code

State_laser Byte % Laser quality index

State_detector Byte % Signal detector quality

State_optics Byte % Optical quality index

Temp_int Short K Internal temperature of the housing

Temp_ext Short K External temperature of the housing

Temp_det Short K Temperature of the detector

Temp_lom Short K Temperature of the measurement unit

Laser_pulses int - Number of laser pulses emitted during

a measurement (lp)

p_calc short # Calibration pulse (normalization of the

measurement unit over time)

Scaling float - Scaling factor (normalization of measurement units

relative to each other) (cs)

Base float # Height of the baseline of the raw signal

(primarily influenced by daylight) (b)

stddev float # Standard deviation of the raw signal

Beta_raw float - Normalized backscatter signal, corrected for range

((P_raw / lp) - b) / (cs * o(r) * p_calc) * r * r, with

P_raw = sum(P_raw_hr) * range_gate_hr / range_gate)

Beta_raw_hr float - High-resolution backscatter signal, normalized

corrected for range

((P_raw_hr / lp) - b) / (cs * o(r) * p_calc) * r * r)

pbl short m Aerosol layers

pbs byte – Quality index for aerosol layers (1: good, 9: bad)

tcc byte – Degree of coverage (overall)

bcc byte – Degree of coverage of the lower cloud layer

sci byte - Sky Condition Index (0: no precipitation, 1: rain, 2: fog

3: snow, 4: precipitation or particles on the window pane)
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Table 1 continued Parameter Type Unit Description

vor short m Vertical visibility

voe short m Opacity of the detected vertical visibility

mxd short m Maximum detection distance

cbh short m Cloud base height

cbe short m Calculated cloud base blur

cdp short m Cloud penetration depth

cde short m Calculated cloud penetration depth blur

cho short m Height offset (calculated in cbh, mxd, vor, and pbl

corresponds to altitude when usealtitude=1, otherwise 0)

Fig. 1 Visual representation of the data collection process. Backscatter raw data are utilized to generate a time-height plotting of backscatter
coefficients (profile)

indicates high concentrations. The scale ranges numerically
from 0 to 5 · 10−6. We generated a backscatter profile for
each day of data collection, further dividing it into hourly
intervals, resulting in 24 profiles per day. Figure2 provides
an example of the processed data. In total, 1,568 images of
dimensions 150 × 1000 were created, each representing an
hour-long measurement period.

The generated backscatter profiles were labeled using
the Weather Research and Forecasting (WRF) Model, a
mesoscale numerical prediction system designed for atmo-
spheric research andoperational forecasting. Figure3presents

theworkflowof theWRFmodel,which features twodynamic
cores, a data assimilation system, and a software architec-
ture optimized for parallel computing. The model serves
a broad spectrum of meteorological applications, covering
scales from tens ofmeters to thousands of kilometers. Its spa-
tial resolution of 1 × 1 km offers greater detail compared to
typical global forecastmodels, which often operate at 27×27
km. The WRF model leverages global weather data from the
Global Forecast System (GFS), provided by the National
Center for Atmospheric Research (NCAR) [25].
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Fig. 2 Backscatter profile of 24-hour measurements taken on the 16th of June 2022. As explained in Sect. 3.2, the color of the plot depends on the
intensity of the measured particle: intense blue means absence of particulate; red means intense presence of particulate. Best viewed in color.

Fig. 3 Adopted workflow for the employed WRF model. Note that the outputs of the first and second steps serve as inputs to the last step. As
explained in Sect. 3.2, GFS is the Global Forecast System. Global weather data from the GFS are used as the first input

TheWRFmodel produces netCDF files representing a 3D
geographic grid, as depicted in Fig. 4. Latitude and longitude
are aligned with the x-axis and y-axis, while 40 pressure lev-
els are represented on the z-axis. The displayed images differ
in spatial resolution and the quality of the WRF model out-
puts. The first image has a resolution of 9 × 9 km, meaning
that each point on the spatial grid is spaced 9km apart. This
results in a relatively coarse depiction of atmospheric condi-
tions, as finer details of meteorological phenomena are not
captured at this scale. In contrast, the second image utilizes
a higher-resolution grid of 3 × 3 km, achieved through the
nesting technique within the WRF model. Nesting involves
embedding one or more high-resolution grids (referred to as

nested domains) within a coarser grid (the parent domain).
In this case, the 3 × 3 km grid is nested inside the parent
domain of 9 × 9 km. During this process, the WRF model
incorporates meteorological data from the parent domain to
enhance the local representation of atmospheric phenomena,
resulting in more precise forecasts for specific areas of inter-
est. Finally, the third image presents data with a resolution of
1× 1 km, which offers nine times the precision of the initial
grid. At this level, nesting is further refined by adding a third
nested domain, enabling the model to capture highly detailed
meteorological features, such as localized variations in tem-
perature, wind, and precipitation. This setup enabled us to
isolate the central point of the reference domain, correspond-
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Fig. 4 Visual representation of the output of WRF model showing the percentage cloud cover. Best viewed in color.

ing to the ceilometer’s geographical location, and determine
cloud presence or absence at each pressure level. This pro-
cess provided hourly cloud cover data for the ceilometer’s
location, serving as ground-truth labels for each backscatter
profile with high reliability.

The labeled backscatter profileswere subsequently used to
train several state-of-the-art deep learning models, including
VGG16 [5], ResNet50 [6], InceptionV3 [7], EfficientNet [8],
and ViT [9], utilizing the PyTorch framework.

VGG16 is a classic Convolutional Neural Network (CNN)
known for its simple and uniform architecture, which serves
as a strong baseline in image classification tasks. Inception
v3 introduces the concept of inception modules, allowing
the network to capture multi-scale features efficiently while
reducing computational cost. ResNet50 employs residual
connections to enable the training of deeper networks and
mitigate the vanishing gradient problem, proving highly
effective in various vision tasks. EfficientNet scales net-
work width, depth, and resolution in a principled manner,
achieving high accuracy with fewer parameters. Lastly,
Vision Transformer (ViT) adopts a transformer-based archi-
tecture that operates directly on image patches, providing an
alternative to convolutional approaches and achieving state-
of-the-art results in image recognition.

The dataset is publicly available at https://zenodo.org/
records/10616434.

4 Experimental results

We trained all models in a standard supervised learning
approach using Cross-Entropy loss. Training and inference
were conducted on 1-hour-long ceilometer measurements,
as detailed in Sect. 3.2. All models were initialized with

ImageNet-pretrained weights to enhance training stability
and robustness. To mitigate overfitting during training, we
utilized horizontal-flip data augmentation. For each experi-
mental setup, the datasetwas divided into training, validation,
and test sets, with proportions of 49% (769 samples), 21%
(329 samples), and 30% (470 samples), respectively, totaling
1050 samples belonging to the True class.

We explored various hyperparameter configurations and
employed two optimizers: Stochastic Gradient Descent
(SGD) and Adam. The following subsection outlines the
combinations tested to identify the optimal model config-
uration.

4.1 Performance analysis and comparison of model
configurations

Figures 5 and 6 show the performance results of various state-
of-the-art deep learning models trained on a dataset of cloud
detection using ceilometer backscatter profiles. The mod-
els evaluated include VGG16, EfficientNet, InceptionV3,
ResNet50, and Vision Transformer (ViT), and were tested
using multiple configurations and optimization strategies.
The figures primarily differ based on the optimizer employed
(SGD for Fig. 5 and ADAM for Fig. 6). Specifically, the
diagrams in Fig. 5 are organized according to training param-
eters like learning rate, momentum, and weight decay,
whereas the diagrams in Fig. 6 are grouped based solely on
learning rate and weight decay. The models were evaluated
using standard metrics, including Accuracy, F1-score, Preci-
sion, and Recall, to gauge their efficacy in detecting clouds
accurately.

The VGG16 model exhibited notable variability across
different configurations. The best performance was observed
with configuration 3 using SGD, yielding an accuracy of
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Fig. 5 Performance results of various state-of-the-art deep learning
models trained for cloud detection using ceilometer backscatter profiles,
evaluated with SGD optimizer and organized by training parameters
such as learning rate, momentum, and weight decay. Models include

VGG16, EfficientNet, InceptionV3, ResNet50, and Vision Transformer
(ViT), with metrics like Accuracy, F1-score, Precision, and Recall used
for assessment. Missing values in some graphs indicate that the value
of the metric in question is close to or equal to 0.0

86.38%, an F1-score of 0.9077, a Precision of 0.8495, and a
Recall of 0.9744. The high recall value indicates that VGG16
was proficient at capturing relevant positive instances (i.e.,
cloud presence). However, its slightly lower precision com-
pared to recall highlights the model’s tendency to generate
false positives. Interestingly, configurations with a higher
learning rate (0.01) performed poorly, achieving amere accu-
racy of 32.98%. This suggests that higher learning rates
caused instability, potentially leading to divergence or over-
fitting during the training process.

EfficientNet demonstrated solid performance, with its
best configuration using SGD achieving an accuracy of
83.19% alongside an F1-score of 0.8824 and a Precision
of 0.8450. This result reflects a balance between preci-
sion and recall, suggesting that EfficientNet effectively
identified cloud instances without a significant number of

false positives or negatives. However, when optimized with
Adam, EfficientNet’s performance slightly decreased, with
the highest accuracy obtained being 81.91%. This difference
underscores that certain architectures benefit more from one
optimizer over another, with SGD appearing more suitable
for EfficientNet in this context.

InceptionV3 showed a moderate performance range,
achieving its highest accuracy of 82.77% with Adam opti-
mization. This configuration exhibited a balanced F1-score
(0.8751) and Precision (0.8656), indicating robust perfor-
mance across different metrics. When optimized with SGD,
InceptionV3 achieved a comparable accuracy of 81.06% but
required the maximum number of epochs (59), reflecting a
slower convergence rate compared to Adam. This suggests
that InceptionV3 might be more efficient with Adam, espe-
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Fig. 6 Performance results of various state-of-the-art deep learning
models trained for cloud detection using ceilometer backscatter profiles,
evaluated with the ADAM optimizer and organized by training param-
eters such as learning rate and weight decay. Models include VGG16,

EfficientNet, InceptionV3, ResNet50, and Vision Transformer (ViT),
with metrics like Accuracy, F1-score, Precision, and Recall used for
assessment

cially for datasets with complex patterns like backscatter
profiles.

ResNet50 emerged as the top-performing model, achiev-
ing the highest accuracy of 89.57% using SGD with config-
uration 2 (learning rate = 10−4, momentum = 0.8, weight
decay = 10−5). The corresponding F1-score of 0.9273 high-
lights the model’s superior robustness and generalization
capabilities. ResNet50 maintained consistent performance
even when optimized with Adam, achieving an accuracy of
87.23% under configuration 4. The consistently high recall
values indicate the model’s strong ability to detect relevant
instances, making it well-suited for real-world applications
in cloud detection.

The Vision Transformer (ViT) model demonstrated com-
petitive results, closely following ResNet50. The highest
accuracy achieved by ViT was 89.36% using SGD with

configuration 3 (learning rate = 10−5), accompanied by
strong precision (0.8795) and recall (0.9808). ViT’s per-
formance underscores the potential of transformer-based
architectures for complex tasks such as cloud detection. Even
when optimized with Adam, ViT maintained robust perfor-
mance, achieving an accuracy of 85.96% with configuration
4. This suggests that transformer-based models, when prop-
erly tuned, can rival traditional convolutional networks in
such specialized tasks.

Overall, a comparison of optimizers across models
revealed that SGD tended to produce higher accuracy scores
compared to Adam, though Adam often provided faster
convergence, requiring fewer epochs. Lower learning rates
generally resulted in more stable and higher accuracies,
while higher learning rates (e.g., 0.01) frequently led to poor
performance, indicating potential issues with stability and
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Table 2 The first half of the
table shows the parameters used
for experiments with SGD. The
second half of the table shows
the parameters used for
experiments with Adam

SGD ADAM

# Learning rate Momentum Weight decay Learning rate Weight decay

1 10−3 0.9 10−4 10−3 10−4

2 10−4 0.8 10−5 10−4 10−5

3 10−5 0.7 10−6 10−5 10−6

4 10−6 0.9 10−6 10−6 10−6

5 10−2 0.9 10−3 10−2 10−3

6 10−2 0.8 10−2 10−2 10−2

7 10−2 0.8 10−4 10−2 10−4

Table 3 Test performance of the
considered state-of-the-art
models. Bold values highlight
the best-performing model for
each evaluation metric when
using either SGD or Adam as
optimizers. Please refer to
Table 2 for the hyperparameter
configurations

Model Configuration Optimizer Accuracy F1-score Precision Recall Training time
(min.) /
Last epoch

VGG16 #3 SGD 86.38 0.91 0.85 0.97 22m / 39

#4 Adam 86.17 0.91 0.84 0.98 24m / 38

EfficientNet #5 SGD 83.19 0.88 0.85 0.92 16m / 14

#4 Adam 81.91 0.87 0.84 0.91 37m / 59

Inception v3 #2 SGD 81.06 0.87 0.83 0.90 30m / 59

#1 Adam 82.77 0.88 0.87 0.88 10m / 15

ResNet50 #2 SGD 89.57 0.93 0.90 0.96 27m / 59

#4 Adam 87.23 0.91 0.90 0.92 23m / 59

ViT #3 SGD 89.36 0.93 0.88 0.98 129m / 59

#1 Adam 86.81 0.91 0.85 0.98 25m / 9

Bold values highlights the best results

overfitting during training. In terms of model performance,
ResNet50 consistently outperformed other architectures,
demonstrating the efficacy of residual connections for feature
extraction from backscatter data. ViT, while slightly behind
ResNet50 in accuracy, showed promise, especially given its
strong recall and balanced performance metrics. The high
recall scores across many configurations suggest a strong
capability to capture positive instances (cloud presence), but
they also highlight the need to balance precision, as seenwith
models like VGG16 and EfficientNet.

In conclusion, the results highlight that ResNet50 and
Vision Transformer are highly effective models for cloud
detection using ceilometer backscatter profiles. Their robust
performance, particularly in terms of recall, demonstrates
their strong suitability for real-world atmosphericmonitoring
applications. This analysis underscores the potential of these
models to accurately identify and classify cloud presence,
providing a reliable foundation for further advancements in
environmental monitoring and data-driven atmospheric anal-
ysis.

4.2 Final model

The final hyperparameters used for training with SGD and
Adam optimizers are reported in Table 2. An early stop-
ping criterionwas applied, whereby trainingwould terminate
if the variation in validation loss remained within a mar-
gin of δ = 0.05 for at least three consecutive epochs. In
total, we conducted 70 experiments, all of which are avail-
able at the following GitHub repository: https://github.com/
alessiochisari/CeilometerDatasetBenchmark.

These experiments were performed on Google Colab Pro
equipped with a Tesla T4GPUwith 16GB GDDR6 memory.
Table 3 shows the best results obtained by training themodels
with the best set of hyperparameters (c.f. Table 2) for each of
the two chosen optimizers.

Figure 7 provides a detailed view of the performance
trends for several deep learning architectures evaluated
across four keymetrics: Accuracy (%),Precision (%),Recall
(%), and F1-score (%). Each metric is plotted as a function
of the number of training epochs, shown on the x-axis, up
to a maximum of 60 epochs. However, the training process
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Fig. 7 Results of the best models for each architecture compared to the Adam and SGD optimizers. The names of the architectures are shown in
the Arch (Architecture) column. The configuration number (Table 3) of the best results are given in the column BC (Best Configuration)
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incorporates an early stopping mechanism, which terminates
the training when the difference in loss between consecutive
epochs falls below a predefined threshold for a fixed number
of epochs. As a result, the number of epochs varies across
models and optimizer configurations, reflecting differences
in learning dynamics and convergence. For each architecture,
the graphs show the best-performing solutions corresponding
to the two optimizers, AdamandSGD,with all the previously
mentioned metrics (accuracy, precision, recall and F1-score)
obtained according to the best parameter configuration shown
in Table 3.
The metrics themselves provide valuable insights into the
strengths and weaknesses of the models. For instance, in
the case of VGG16, the recall metric consistently increases
across epochs, demonstrating the model’s ability to effec-
tively identify positive instances (e.g., cloud presence). How-
ever, the precision curve shows somefluctuations, suggesting
a propensity for occasional false positives. EfficientNet, on
the other hand, achieves a balance between precision and
recall, with its performance metrics stabilizing effectively
as training progresses. This indicates strong generalization
capabilities, though the model may take slightly longer to
converge compared to others.
InceptionV3 presents an interesting case, with moderate per-
formance across all metrics. It demonstrates reliability in
capturing relevant patterns in the data, as evidenced by its
recall trends, though its overall accuracy is slightly lower
compared to top-performing models. Adam optimization
appears to benefit this architecture, as the model converges
more quickly and achieves its best results with fewer epochs
compared to SGD.
ResNet50 stands out as the best-performing architecture
across all metrics. Its accuracy and F1-score remain consis-
tently high, and the recall metric underscores its exceptional
ability to detect positive instances with minimal false nega-
tives. This performance is likely due to the advantages of
residual connections, which help the model capture hier-
archical features more effectively. The Vision Transformer
(ViT) also delivers impressive results, rivaling ResNet50 in
accuracy and recall. Its performance demonstrates the poten-
tial of transformer-based architectures for tasks involving
complex patterns in atmospheric data. While Adam leads
to faster convergence for ViT, the final performance metrics
aremarginally better when themodel is optimizedwith SGD.

Regarding training times and last epoch (last column of
Table 3), it can be noted that them vary across models,
influenced by the early stopping criterion used to prevent
overfitting. The VGG16 model requires 22–24min with
38–39 epochs, demonstrating quick convergence. Similarly,
Inception v3 shows a range from 10min for configuration #1
to 30min for configuration #2, both stopping after 59 epochs,
as early stopping was likely triggered to prevent overfitting.
The EfficientNet model, with more complex architecture,

requires longer training times (16–37min) and up to 59
epochs, reflecting the balance betweenmodel complexity and
training duration. ResNet50 achieves efficient performance
with training times of 23–27min, stopping after 59 epochs
for both configurations. The Vision Transformer (ViT) takes
the longest training time (129min for configuration #3), with
59 epochs, due to its computational intensity, though config-
uration #1 converges in 25min and 9 epochs. All models are
pretrained, and the use of early stopping ensures that train-
ing is halted before overfitting occurs. Thus, while VGG16
and Inception v3 train faster, EfficientNet and ViT offer
higher accuracy at the cost of longer training durations. After
completing the training of all models, the inference time is
generally negligible and takes between 10 to 20s for a batch
size of 12 samples, or approximately 1 to 1.7 s per sample.

The final column of plots (Fig. 7), showing the confu-
sion matrices provided by the best model for each involved
architecture, offers additional insights into the classifica-
tion performance of each model. The diagonal elements of
these matrices represent correctly classified instances, while
off-diagonal elements indicate misclassifications. For mod-
els like ResNet50 and ViT, the confusion matrices reveal a
strong ability to correctly classify both positive and negative
instances, reinforcing their suitability for the task.

Overall, the analysis highlights the interplay between
model architecture, optimizer choice, and the early stop-
ping mechanism. ResNet50 emerges as the most robust and
reliable model, followed closely by ViT, while architectures
like EfficientNet and InceptionV3 offer competitive alterna-
tives with specific strengths. The early stopping mechanism
ensures efficient training, preventing overfitting and reducing
computational costs, while still enabling a thorough evalu-
ation of model performance. These results demonstrate the
promise of advanced neural network architectures for chal-
lenging tasks such as cloud detection from lidar backscatter
data.

5 Discussion

The results presented in this study highlight several critical
observations regarding the performance of state-of-the-art
deep learning architectures for cloud detection using lidar-
based ceilometer backscatter data. Below, we discuss the
implications of these findings, the strengths and limitations
of the proposed methodology.

We aim to emphasize the distinctions between our dataset
and those commonly found in the literature. Conventional
remote sensing systems employing lidar technology are
primarily satellite-based, capturing data from a top-down
(satellite-to-Earth) viewpoint. While these methods have
been extensively researched and yield valuable atmospheric
and surface data, they differ significantly from our approach,
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Fig. 8 Average (AVG) a and
Standard Deviation (SD) b of
the 10 best experiments of the
best model configurations

which takes a bottom-up (Earth-to-satellite) perspective. This
shift in the data acquisition model introduces a novel and
compelling aspect to cloud detection, as the dataset we pro-
pose provides insights into atmospheric dynamics from a
rarely explored viewpoint in existing studies. As a result of
this unique perspective, our dataset stands apart from others
in the field, making it innovative. Therefore, comparing it
directly with existing methods is not feasible, as the dataset’s
nature is substantially different, rendering those traditional
approaches unsuitable.

5.1 Performance analysis of models

Our experimental results revealed that ResNet50 achieved
the highest accuracy (89.57%) among CNN-based archi-
tectures, closely followed by the Vision Transformer (ViT)
with 89.36%. This performance gap suggests that residual
connections in ResNet50 provide significant advantages in
extracting hierarchical features from complex backscatter
profiles. Meanwhile, ViT’s ability to model global depen-
dencies demonstrates the potential of transformer-based
approaches for atmospheric data analysis. These findings
are consistent with the growing success of hybrid and trans-
former models in computer vision.

Other architectures, such as VGG16, EfficientNet, and
InceptionV3, showed lower, albeit competitive, performance.
Notably, VGG16 exhibited high recall values, indicating its
reliability in identifying cloud presence, but at the cost of
increased false positives. EfficientNet, while slightly behind
in accuracy, offered a balanced trade-off between precision
and recall, which could be beneficial for specific real-time

applications where false negatives are particularly detrimen-
tal.

The results shown in Fig. 8 present the average test accu-
racy and corresponding standard deviation for the top 10
experiments using the best configurations of Adam and SGD
optimizers across various architectures. These metrics offer
complementary insights: average accuracy reflects general
performance, while standard deviation reveals how stable the
model is across multiple runs.

Starting with VGG16, both optimizers achieve compara-
ble accuracy: SGD reaches 86.87%, slightly outperforming
Adam at 86.38%. However, SGD shows more consistent
results, with a lower standard deviation (0.58%) compared
to Adam (1.04%). This suggests that while performance is
similar, SGD yields more stable outcomes. For Efficient-
Net, results are nearly identical in terms of accuracy-SGD at
80.87% and Adam at 80.81%. Yet, Adam exhibits slightly
better stability with a lower standard deviation of 1.49%
versus 2.24% for SGD. This makes Adam marginally more
reliable in repeated runs, despite similar performance. The
Inception v3 architecture reveals a clearer distinction. SGD
significantly outperforms Adam in bothmetrics: it achieves a
higher average accuracy (81.47% vs. 79.34%) and a notably
lower standard deviation (1.77% vs. 4.11%). These results
indicate that SGD is both more accurate and considerably
more stable, making it the preferred choice for this archi-
tecture. In contrast, ResNet50 shows minimal differences
in accuracy-SGD slightly leads with 87.53% over Adam’s
87.21%. However, stability tells a different story: Adam
has an impressively low standard deviation of 0.55%, com-
pared to SGD’s 2.43%. This highlights Adam’s robustness
for ResNet50, despite the small accuracy gap. Lastly, in the
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case of theVisionTransformer (ViT), SGDachieves the high-
est overall accuracy at 89.57%, surpassing Adam’s 86.76%.
Additionally, SGDoffers superior consistencywith a remark-
ably low standard deviation of 0.17%, while Adam records
0.69%. Here, SGD stands out as both the most accurate and
the most stable optimizer.

The comparison across architectures underscores the
importance of evaluating both accuracy and stability when
selecting an optimizer:

• Adam is particularly effective with ResNet50 and Effi-
cientNet, where it provides higher consistency.

• SGD clearly outperforms Adam in Inception v3 and ViT,
excelling in both accuracy and robustness.

• In VGG16, the two optimizers are comparable, but SGD
provides slightly better and more stable results.

These findings suggest that optimizer selection should
balance both performance and repeatability, especially in
real-world applications where consistency across multiple
training runs is crucial.

5.2 Optimizer sensitivity and hyperparameter
impact

A notable observation was the sensitivity of model perfor-
mance to optimizer choice and hyperparameter configura-
tions. Models optimized with SGD generally outperformed
those trained with Adam, particularly in achieving higher
accuracy and stability. However, Adam demonstrated faster
convergence, which could be advantageous for computa-
tionally constrained scenarios. This optimizer-dependent
performance underscores the importance of hyperparameter
tuning for specialized tasks like cloud detection.

5.3 Dataset characteristics and challenges

The dataset curated for this study, derived from lidar ceilome-
ter backscatter profiles, presented unique challenges due to its
high temporal resolution and the variability of atmospheric
conditions. The presence of diverse cloud types, combined
with the influence of Mount Etna’s complex meteorologi-
cal phenomena, created a demanding environment for model
training and evaluation. Despite these challenges, the mod-
els achieved promising results, demonstrating the potential
of lidar data for real-world cloud detection tasks.

One limitation of the dataset is its geographical specificity,
as data were collected exclusively in the vicinity of San Gio-
vanni La Punta, Catania, Italy. Future studies could benefit
from expanding the dataset to include backscatter profiles
from multiple regions with varying climatic conditions. This
would enhance the generalizability of the models and facili-
tate cross-regional comparisons.

5.4 Practical implications and applications

The high accuracy and recall achieved by ResNet50 and ViT
make thesemodels viable candidates for deployment in oper-
ational meteorological systems. Their robust performance in
detecting cloud presence from lidar data could complement
existing satellite and radar systems, particularly for identify-
ing low-altitude clouds and localized aerosol concentrations.

Moreover, the potential for applying this approach to
detect other atmospheric phenomena, such as pollutants or
volcanic emissions, is noteworthy. The ability of lidar-based
systems to capture fine-grained vertical profiles of the atmo-
sphere could pave the way for monitoring air quality, early
warning systems for natural disasters, and climate research.

5.5 Strengths, limitations and future directions

The proposed approach for cloud detection using lidar-based
ceilometer backscatter data demonstrates several notable
strengths that distinguish it from traditional remote sensing
methodologies. One of the main strengths lies in its novel
bottom-up data acquisition. Unlike conventional satellite-
based techniques, our method captures atmospheric dynam-
ics from an Earth-to-satellite perspective, allowing for high-
frequency, real-time monitoring of the lower atmosphere.
This unique vantage point enables the detailed observation of
phenomena such as low-altitude cloud formations and local-
ized aerosol concentrations that are often underrepresented
in traditional approaches.

Another strength is the robust performance of the deep
learningmodels. The benchmarking experiments highlighted
that architectures such as ResNet50 and Vision Transformer
(ViT) are particularly effective in extracting hierarchical and
global features from complex backscatter profiles. Their high
accuracy and recall not only validate the efficacy of the
method but also underscore the potential for integrating these
models into operationalmeteorological systems for tasks like
early warning detection and real-time environmental moni-
toring.

Despite these significant advantages, several limitations
must be acknowledged. The geographical scope and tem-
poral window of the dataset are relatively limited, as the
data were collected exclusively near San Giovanni La Punta,
Catania, Italy over a three-month period. This geographi-
cal and temporal confinement may affect the generalizability
of the models when applied to regions with different cli-
matic conditions or extended seasonal variations. Moreover,
the performance of the models is notably sensitive to the
choice of hyperparameters and optimizer configurations. As
observed in our experiments, variations in learning rate,
momentum, and weight decay can lead to significant fluc-
tuations in accuracy and stability, indicating a potential
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challenge in achieving consistent performance across diverse
training scenarios.

Looking ahead, several future directions can be pursued
to build upon the current work. First, expanding the dataset-
both in terms of geographic diversity and duration-would
enhance model robustness and facilitate cross-regional com-
parisons, making the approach more broadly applicable.
Additionally, investigating alternative and hybrid architec-
tures, such as integrating CNNs with transformer-based
models, could leverage the complementary strengths of local
feature extraction and global context modeling, potentially
leading to further performance improvements. Finally, sig-
nificant efforts should be directed toward real-time deploy-
ment. This involves optimizing the computational efficiency
of the models and reducing latency to facilitate their incor-
poration into practical, operational meteorological systems,
especially in edge computing scenarios where resources are
limited.

6 Conclusion

In this study, we proposed and evaluated a novel approach
for cloud detection using lidar-based ceilometer backscatter
data, benchmarked across state-of-the-art deep learningmod-
els. By leveraging a newly curated dataset characterized by
high temporal resolution and diverse atmospheric conditions,
we demonstrated the efficacy of advanced neural network
architectures in accurately detecting cloud presence.

The experimental results highlight ResNet50 as the top-
performing model, achieving an accuracy of 89.57%, with
the Vision Transformer (ViT) closely following at 89.36%.
Thesefindings underscore the advantages of residual learning
and transformer-based global attention mechanisms in cap-
turing complex patterns in backscatter profiles. Additionally,
models such as VGG16, EfficientNet, and InceptionV3 pro-
vided competitive performance, offering alternative solutions
based on specific application requirements, such as reduced
false negatives or computational efficiency.

This work contributes to the field in two significant ways:

• Dataset Availability: We provide a publicly accessible
dataset of labeled backscatter profiles acquired over three
months near Mount Etna, Italy. This dataset represents a
valuable resource for advancing research in cloud detec-
tion and atmospheric studies.

• Comprehensive Benchmarking: By evaluating sev-
eral deep learning architectures under varying hyperpa-
rameter configurations and optimization strategies, we
establish a robust baseline for future developments in
lidar-based cloud detection.

Despite these achievements, our study identifies areas
for improvement, including expanding the dataset to cover
diverse geographic regions, exploring alternative architec-
tures, and optimizing models for real-time deployment.
Future research could also explore the application of this
approach to detect other atmospheric phenomena, such as
aerosols, pollutants, or volcanic emissions, further broad-
ening the utility of lidar-based systems in environmental
monitoring.

In conclusion, our results validate the potential of com-
bining lidar ceilometer data with advanced deep learning
techniques to enhance cloud detection capabilities. This inte-
gration represents a significant step forward in developing
accurate, scalable, and automated solutions for atmospheric
monitoring, with implications for meteorology, climate
research, and environmental protection.
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