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Knowledge of microphysical characteristics of precipitation, including intensity, drop size, fall velocity, 
and kinetic energy, is crucial for the quantitative measurement of precipitation using radar and for 
estimating precipitation erosivity. This study investigates the variations in precipitation parameters 
from August 2019 to August 2021 at a high-altitude site in the Tianshan Mountains, located in the 
arid regions of China, utilizing an optical disdrometer. Detailed analyses are provided on precipitation 
intensity (I), drop size distribution, fall velocity, radar reflectivity (Z), and kinetic energy (KE). 
Additionally, empirical relationships between precipitation intensity and radar reflectivity (Z-I) as 
well as between intensity and kinetic energy (KE-I) are established. The proportion of precipitation 
events with an intensity of less then 2.5 mm h−1 is higher during the dry season compared to the wet 
season, whereas the proportion of events with an intensity of less than 10 mm h−1 is lower in the wet 
season. The characteristics of the drop size distribution are consistent with those of intensity. Due to 
the increased occurrence of solid precipitation (snow) during the dry season, fall velocities are greater 
in the wet season. The correlation coefficient values for the Z-I relationship are low, whereas the 
exponent values are high. Furthermore, there is a distinct variation in the coefficient and exponents 
of the Z-I relationship between the wet and dry seasons. A power-law model for the KE-I relationship 
is also proposed. The kinetic energy over a 1-minute was calculated using five different KE-I equations, 
and these results were subsequently compared to assess the model’s performance.
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Precipitation is one of the most difficult meteorological quantities to measure accurately1. Precipitation is also an 
essential measurement to have in order to detect variability and trends of climate change, and for understanding 
hydrologic processes and water cycles of water resources2–5. Furthermore, as the primary input parameter for 
models, accurate precipitation measurement is crucial for ensuring model accuracy4,6,7. There are two principal 
ways for measuring precipitation: direct measurements and indirect measurements4,8–10. The most common 
instrument for direct measurement is a rain gauge. Rain gauges directly measure point precipitation on the earth’s 
surface. Indirect measurements include radar and satellite based estimates of precipitation over large areas11. 
Both direct and indirect observations have their respective advantages and disadvantages. Direct precipitation 
measurements from rain gauges can provide accurate measurements for longer term records, but they are only 
representative of small areas. This is because of the scarcity and uneven spatial distribution of gauges, especially 
over topographically complex regions; therefore, these measurements might be inefficient for demonstrating 
spatial precipitation distributions12–14. Radar and satellite based estimates provide adequate temporal and spatial 
resolution of precipitation patterns over large areas. This enables accurate precipitation modelling in regions 
where conventional in situ observations are not readily available15,16. However, the performance of radar and 
satellite-based precipitation needs to be calibrated or verified with available direct measurements to assure its 
accuracy7,17–19.

Microphysical characteristics of precipitation, including size, shape, velocity, and kinetic energy, play 
crucial roles across various fields20–22. These fields encompass numerical weather prediction, validation of 
satellite estimates, and climatological and hydrological applications21,23,24. Conventional rain gauges (i.e., 
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tipping-bucket, and weighing pluviometer) are limited to measuring rain intensity and accumulation; they do 
not capture information about the microphysical characteristics of precipitation25,26. Disdrometers offer an 
alternative for obtaining in situ measurements, as they can study microphysical characteristics by measuring not 
only rain intensity and accumulation, but also the size, fall velocity, and other attributes of hydrometeors27–31. 
Furthermore, disdrometers are capable identifing the type of precipitation, whether it be solid, liquid, or mixed.

Optical disdrometers are among the most widely utilized devices for meteorological measurements, 
capable of assessing rain intensity, radar reflectivity, kinetic energy, and fall velocities29. Numerous studies 
have employed optical disdrometers to investigate the microphysical characteristics of precipitation across 
various climates and locations, including France, Australia, India, South Korea, Spain, Switzerland, the USA, 
and China. Gires et al.32 compared the performance of two optical disdrometers in France, which provided a 
binned distribution of raindrops based on their size and velocity. The analysis of rain intensity was conducted 
using universal multifractal yields, revealing that the two devices yielded similar results. In other observational 
experiment, 14 Parsivel disdrometers were utilized to assess the impact of limited area sampling of rainfall on 
result, demonstrating that rain intensity could be underestimated by as much as 70% when relying on a single 
disdrometer25. Additionally, the variability in drop size distribution was examined by analyzing 12 disdrometer 
datasets across three latitude bands, revealing consistent patterns of variability across the three regions, despite 
differing distributions of drop size parameters33.

Information on precipitation microphysics obtained from disdrometers is essential for studying precipitation 
processes. Rainfall intensity serves as a crucial input parameter in runoff and water erosion modeling. Intense 
rainfall is also a primary cause of flash floods and other weather-related disasters34,35. Radar reflectivity is utilized 
to enhance the accuracy of rainfall estimates and to provide valuable insights into the temporal and spatial 
variability of precipitation35,36. Kinetic energy is vital for soil erosion estimation20,35,37. Numerous studies have 
concentrated on the relationship among radar reflectivity and kinetic energy and rainfall intensity derived from 
drop size distributions29,35,38–40. Some research results indicate that the relationship between radar reflectivity 
and rainfall intensity is significantly influenced by difference in altitude and air density, or is heavily dependent 
on the fitting methodology38. Additionally, the kinetic energy values computed using different equations for 
rainfall intensity show notable variations, indicating that the kinetic energy–intensity relationship is contingent 
upon regression parameters, which in turn rely on location-specific calibration39,40.

Water—resource scarcity is a significant challenge faced by inhabitants of arid regions in Northwest China, 
primarily due to sparse precipitation and intense evaporation41. Precipitation characteristics, such as amount, 
intensity, and duration have a profound impact on hydrological processes, including runoff, water—resource 
supply, and irrigation42. In mountainous areas, where topographic effects create conditions for abundant 
precipitation, these areas often serve as vital sources of water—resources, significantly contributing to runoff in 
arid areas. Numerous studies have investigated the microphysics of precipitation using disdrometers located at 
low altitudes or coastal sites. However, the microphysical structure of precipitation in the high mountains of arid 
regions is rarely documented, mainly because of the extreme climatic conditions. This paper aims to establish 
the relationships between precipitation intensity and radar reflectivity, as well as between precipitation intensity 
and kinetic energy. An optical disdrometer was used in the Bahasulun glacier region and the north slope of the 
Tianshan mountains. Data were collected from August 2019 through August 2022. Additionally, the influence of 
terrain on precipitation is analyzed by comparing results with observations from the Jing River meteorological 
station at the foot of the mountain.

Results and discussion
Precipitation intensity results
Precipitation types were classified into four categories: light rain (< 2.5 mm h−1), moderate rain (2.5–10 mm 
h− 1), heavy rain (10–50 mm h−1), and extreme rain (≥ 50 mm h−1). These classifications follow the WMO Guide 
to Meteorological Instruments and Methods of Observation (WMO-No. 8, also known as the CIMO Guide). The 
1-min precipitation intensity ranged from from 0.1 to 188.75 mm h−1 throughout the study. Table 1 shows that 
light rain (less than 2.5 mm h− 1) dominates the study area, accounting for 83.2% of total precipitation. This is 
consistent with the arid nature of the region, where precipitation is generally sparse. Moderate rain (2.5–10 mm 
h−1) constitutes 14.2% of total precipitation, while heavy and extreme rain events are rare, contributing less than 
5% and 0.1%, respectively. The distribution of precipitation intensity varies significantly between the dry and 
wet seasons. During the dry season (October to April), precipitation is primarily in the form of snowfall, with 
light rain accounting for 92.9% of the total. In contrast, the wet season (May to September) experiences a higher 
frequency of moderate rain, which is three times more prevalent than in the dry season. Heavy and extreme rain 
events, which often lead to flooding, are almost exclusively confined to the wet season and are concentrated in 
mountainous areas. These studies align with previous studies that have documented the influence of topography 
on precipitation patterns in mountainous regions.

Period

Intensity (mm h− 1)

 < 2.5 (%)  < 10 (%)  < 50 (%)  >  = 50 (%)

Total 83.2 14.2 2.5 0.1

Dry 92.9 6.3 0.8 0.0

Wet 78.8 17.8 3.2 0.2

Table 1.  Percent of precipitation intensity in different categories.
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Drop size and velocity distribution results
Figure 1 shows the number of drops in each diameter class. The distribution of drop sizes during the observation 
period was highly consistent with that observed during the wet season (R2 = 0.997), while the dry season showed 
a slightly lower correlation (R2 = 0.993). Drop sizes ranged predominantly from 0.35 to 2.6  mm, accounting 
for 86% of all drops during the entire period and 88% during the wet season (Fig. 2a, b). In the dry season, 
the range of drop sizes was narrower, with 83% of drops falling within the same size range (Fig. 2c). Notably, 
the majority of drops during the wet season had a diameter of 3 mm, while in the dry season, most drops were 
1.5 mm in diameter. This difference in drop size distribution between seasons can be attributed to the varying 
atmospheric conditions and precipitation types. Figure 1 shows that the number of drops with a diameter less 
than 1.25 mm is significantly higher in the dry season than in the wet season. The results are consistent with 
those reported by Jiang et al.43 in Zhaosu and Tianchi in the western and central Tianshan Mountains. Drops 
with sizes > 7 mm or < 0.35 mm rarely occur in high mountains, as noted in the results of Cosma et al.44, Cha and 
Yum45. Concurrently, previous studies indicate that precipitation types (e.g., convective and stratiform) exert a 
pronounced influence on raindrop size distribution characteristics46,47.

Figure 3 shows the mean velocity in each diameter class. The velocity distribution of drops was consistent 
across all observation periods, with most drops falling at velocities between 0.25 m s−1 and 1.7 m s−1, accounting 
for 96.6% of the rainfall. Notably, the mean velocity of drops was higher in the wet season compared to the 
dry season, except for the smallest diameter classes. This observation is likely due to the increased intensity of 
precipitation during the wet season, which results in larger drops falling at higher velocities.

Radar reflectivity and intensity (Z-I) relations results
The variability of the Z-I relationship is influenced by factors such as geographical location, atmospheric 
conditions, precipitation types, and orographic effects. Consequently, investigating the Z-I relationship at 
different time scales is necessary to better understand the variability. This will help further reduce uncertainties 
in weather radar-based precipitation intensity estimates, thereby enhancing quantitative precipitation estimates 
from radar data. The Z-I relationships for the entire observation period, the wet season, and the dry season were 
derived using a power-law model. The corresponding fitted power-law curves and equations are presented in 
Fig. 4.

	 Z = 136.7I1.856; R2 = 0.89� (1)

	 Z = 154.7I1.831; R2 = 0.89� (2)

	 Z = 89.5I1.783; R2 = 0.67� (3)

Fig. 1.  Mean drop size distribution of each drop class.
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Equation 1 represents the relationship for the entire observation period, Eq. (2) for the wet season, and Eq. (3) 
for the dry season. The results showed that the coefficient (a) and exponent (b) values of the Z-I relationship 
were similar for the entire observation period and the wet season, but differed significantly during the dry 
season. Notably, a distinct difference in the coefficient and exponent values of the Z-I relationship is found 
when comparing the value of the wet season with those of the dry season. Specifically, in the equation Z = aRb, 
the coefficient ‘a’ is larger during the wet season and smaller during the dry season, whereas the exponent ‘b’ 
exhibit minimal difference. Additionally, larger drop diameters are observed in the wet season compared to the 
dry season. Our Eq. (1) has the same power but a lower coefficient (a) and higher exponent (b) when compared 
to the expressions fitted by Liu et al.26 from southeast China [Z = 231.8I1.543], Ji et al.24 from northern China 
[Z = 247.19I1.348], and Kirsch et al.48 from Germany [Z = 180I1.41].

Specifically, the coefficient was larger during the wet season and smaller during the dry season, while the 
exponent exhibited minimal variation. These studies suggest that the Z-I relationship is strongly influenced 
by seasonal variations in drop size distribution and precipitation intensity. The Z-I relationship derived in this 
study differs from those reported in other regions, such as southeast China, northern China, and Germany, 
highlighting the need for region-specific adjustments in radar-based quantitative precipitation estimation, 
particularly in mountainous arid areas.

Kinetic energy and intensity (KE-I) relations results
The relationship between KE and I was established using 1-min resolution data (Fig. 5). The KE values ranged 
from 0.02 to 7568 J m− 2 h−1 during the study period, with 94% of observations falling below 2000 J m− 2 h−1. 
The KE range during the wet season was similar to that of the entire observation period, while the dry season 
exhibited significantly lower KE values, with 97% of observations below 25 J m−2 h−1. During the dry season, 
about 97% of the observations had KE value below 25 J m−2 h−1. The corresponding fitted power-law curves and 
equations were obtained from these observations:

Fig. 2.  Cumulative percent of each drop size class.
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	 KE = 4.993I1.403; R2 = 0.88� (4)

	 KE = 5.644I1.379; R2 = 0.88� (5)

	 KE = 1.93I1.498; R2 = 0.85� (6)

The KE-I equation derived for the experimental site is analiogous to those widely used in the KE estimation. 
To evaluate the efficiency of the KE-I estimation equations, we plotted the measured KE values against the KE 
estimate derived from equations used globally (Eqs. 9–13). This comparison showed that the kinetic energy 
expressed as a function of the area and time (J m−2 h−1) is more suitable for establishing a relationship with I. 
The KE-I relationships derived from the data showed that the exponential model tends to overestimate KE, while 
the logarithmic model exhibits an upper limit where KE approaches a constant value for a given I. As shown 
in Fig. 6, the KE estimated by Eqs. (8)–(10) is significantly underestimated when measured KE values exceed 
5000 J m− 2 h− 1. However, the KE estimated by Eqs. (11) and (12) performs well with the observed data. Based 
on these studies, we recommend using the power-law model (Eq. 12) for accurate KE estimation in high-altitude 
mountainous regions.

It is well established that precipitation is more abundant in high mountains regions compared to the piedmont 
plains, primarily due to the topography uplift of water vapor, which strong influences the airflow patterns in 
the area. Different airflow patterns result in different precipitation types. Numerous studies have documented 
the differences in drop size distribution between convective and stratiform rainfall. These investigations have 
concluded that small drops dominated convective rainfall, whereas large drops were dominated in the stratiform 
rainfall33,49. The percentages of raindrops in each of the four diameter classes are shown in Table 2. In the wet 
season, the percentage of drops with a diameter ≤ 1  mm is considerably higher than that during the entire 
observation period and in the dry season. Convective rainfall often occurs because the mountainous terrain 
forces the local air to ascend. Additionally, due to the strong evaporation from Aibi Lake downstream contributes 
to the formation of fog, which is generated by vapor ascending to the high mountains, and is captured by optical 
disdrometer. This fog and moisture further enhance the occurrence of convective rainfall. Similar results have 
been found in the inner region of the Southern Appalachians Mountains, as shown by Prat and Barros50.

The present study found that heavy-intensity rainfall exceeding 2.5 mm accounts for less than 5% of the total 
rainfall, which is significantly lower than conclusions drawn in existing research. Wilson and Barros51 suggest 
that the number of large drops associated with heavy-intensity rainfall may be underestimated due to their 
smaller number and their susceptibility to environmental conditions, such as turbulence. Similarly, the velocity 
of large raindrops measured by optical disdrometers may be underestimated by up to 25% when compared to 
predictions based on theoretical terminal velocities. This discrepancy is believed to arise because high winds 
cause non-vertical trajectories of raindrops, particularly in mountainous regions52.

Fig. 3.  Mean distribution of velocity for each drop size class.
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The variations in raindrop size distributions have often been regarded as a major limitation to the reliability 
of radar-measured rainfall. As suggested by Maki et al.53, drop size distributions can be categorized by sizes that 
improve the radar-based quantitative precipitation estimation by refining the equations for the Z-I relationship. 
Due to the influence of various factors, including orographic effects and water vapor, differences in raindrop size 
distributions are observed. These variations lead to different parameters for the Z-I relationship; however, the 
form of the empirical model remains unchanged.

In general, precisely measurement KE requires expensive instruments and extensive analysis due to its 
variability across spatial and temporal scales. Consequently, recent research has focused on estimating KE from 
other available factors, such as precipitation intensity. This study found that the parameters for estimated KE-I 
equations in our work are smaller than those proposed by the literature. This discrepancy may be attributed to 
the frequent occurrence of light-intensity rainfall, which is influenced by strong evaporation downstream, as 
well as the capacity of Aibi Lake to transport a substantial amount of water vapor. Our results are consistent with 
Petan et al.52 in that the value of KE is higher at higher elevation, although the precise relationship between KE 
and elevation remains unclear. Overall, the differences in the parameters of the KE-I relationships contribute to 
differences in precipitation patterns. This is due to complex orography and water vapor sources, as well as other 
geographical characteristics, and differences in instrumental sensitivity20,54. Therefore, whenever possible, KE 
should be measured directly rather than estimated from empirical KE-I relationships.

Conclusions
The results of this study demonstrate that the microphysical processes involved in precipitation formation in 
the Tianshan Mountains differ significantly from those observed in other regions. The findings highlight the 
importance of region-specific adjustments in radar-based quantitative precipitation estimation and kinetic 
energy calculations. The Z-I and KE-I relationships derived in this study are influenced by seasonal variations in 
drop size distribution and precipitation intensity, emphasizing the need for direct measurements in high-altitude 
mountainous regions. Future research should focus on further refining these relationships and investigating the 
microphysical processes associated with heavy precipitation in the study region. Accurate empirical relationships 
can only be established with measured data, which are essential for studying precipitation erosivity in complex 
terrains and variable climates. The high altitude and low temperature of the study site result in a bimodal drop-

Fig. 4.  Z-I relationship for (a) total, (b) wet season, and (c) dry season.
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size distribution over the entire observation period, with unimodal distributions observed in individual seasons. 
The concentration of drop sizes around midsize drops (1.25–4.5 mm) and the influence of orographic effects on 
precipitation intensity and drop size distribution highlight the need for region-specific adjustments in radar-
based precipitation estimation. Furthermore, the frequent occurrence of light-intensity rainfall, influenced 
by strong evaporation from Aibi Lake, underscores the importance of considering local geographical and 
meteorological conditions in precipitation studies.

Method
Characterization of the study area
The measurement sites are located in Bahasulun (44.35°N, 85.26°E, altitude 3000 m), encompassing a flat, 
open area approximately 1000 m2 in size, devoid of nearby obstacles (Fig. 7). The experimental catchment is 
located upstream of the Jing River, which originates from the northern slope of the Tianshan Mountains with 
an elevation range from 500 to 5800 m a.s.l. in the autonomous region of Xinjiang, northwest China. The study 
area is characterized as an arid region within the hinterland of the Eurasian continent, far from the ocean. The 
mean annual temperature varies between 4 and 8.9  °C. Precipitation exhibits a decreasing trend from north 
to south, from high mountains to plains. The variability of precipitation was extremely large in the study area 
due to orographic effects and the influence of Lake Aibi. For example, precipitation can reach 400–600 mm at 
elevations above 1200 m in mountains regions, whereas in the plains below 1000 m, precipitation amounts are 
approximately 150 mm.

Instrumentation and data
Precipitation microphysics was measured using a second-generation OTT PARSIVEL disdrometer (hereinafter 
referred to as OTT PARSIVEL2) from January 1, 2019, to August 31, 2021. The OTT PARSIVEL2 is an optical, 
laser-based disdrometer that employ laser beams to measure the number, size, and velocity of raindrops, 
subsequently estimating precipitation characteristics such as accumulated rainfall amount, intensity, and 
kinetic energy. The disdrometer comprises of two lenses, one emitting and one receiving, separated by a 54 cm2 
laser beam (30 × 180  mm). Detailed information regarding the instrument, measurement technique and the 
assumptions underlying the measurements can be found in OTT55, Tokay et al.36, Angulo-Martínez and Barros20, 
and Ramon et al.39. The measurement assumptions significantly influence the recorded size and velocity of 

Fig. 5.  Relationship between KE and I measured by the disdrometer (a): Total, (b): wet season, and (c): dry 
season.
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hydrometeors. One-minute precipitation observations were systematically recorded throughout the entire study 
period. Precipitation events were identified based on the following criteria: a precipitation event commenced 
when precipitation was continuous for at least 10 min during which precipitation intensity values reached a 
minimum of 0.1 mm h−1 and two precipitation events were separated by a period of at least 1 h without rain29.

A total of 468 rainfall events, comprising 48,091 one-minute observations, were documented during the 
investigation, resulting in an accumulated precipitation of 1407.66  mm, which represents 98.8% of the total 
precipitation recorded. The measurement instrument functioned impeccably with no data loss throughout the 

Fig. 6.  Comparison of KE measured with the estimated equations from the literature.
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entire monitoring period. Approximately 1.2% of the data were excluded due to intensity values below 0.1 mm 
h − 1 or rainfall durations less than 10 min. The Jinghe station located at the base of the mountain, recorded 
205.8 mm of precipitation during the study period (Fig. 8), which was approximately one-seventh of the amount 
observed by the OTT PARSIVEL2. This discrepancy in precipitation levels between the high mountainous 
region and the piedmont plain is notable. Furthermore, the Alpine mountains were identified as the primary 
water source for sustaining and nurturing the downstream oases in arid regions.

Precipitation microphysical parameters
Disdrometer measures the number, size, and velocity of raindrops, enabling the estimation of various 
precipitation characteristics. Precipitation intensity, radar reflectivity, and kinetic energy are all associated with 
different aspects of the raindrops. The precipitation intensity (I, mm h−1) is defined as35,48,56:

	
I = 6π10−4

∫ Dmax

0
v (D) D3N (D) dD� (7)

where v(D) is the terminal fall velocity of the drops with equivolume diameter D (mm). N (D) is the number 
concentration that generally describes a population of differently sized raindrops per drop size D. Dmax is the 
largest considered drop-size.

The relationship between radar reflectivity (Z, mm6 m− 3) and precipitation intensity (I, mm h− 1) serves as 
the foundation for quantitatively measuring precipitation using radar. Radar reflectivity can be calculated by 
employing raindrop size distribution and velocity alongside appropriate mathematical models35,48. Numerous 
studies have demonstrated that the radar reflectivity–precipitation intensity (Z-I) relationship offers insights into 
the microphysical process associated with raindrops22,25,36. The majority of these studies have identified a robust 
statistical relationship of Z-I, typically represented in the general form of a power law22,29,35,48:

	 Z = aIb� (8)

Fig. 7.  Study area with the location of the monitoring equipment.

 

Period

Diameter (mm)

 <  = 1 (%)  <  = 5 (%)  <  = 10 (%)  > 10 (%)

Total 3.0 96.0 0.8 0.0

Wet 31.1 68.5 0.8 0.0

Dry 1.0 98.1 0.8 0.0

Table 2.  The percent of different diameter class of raindrops data.
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where the coefficient ‘a’ deduces the presence of drops size and the exponent ‘b’ represents the microphysical 
process. The combination of the parameters ‘a’ and ‘b’ represents the microphysical processes that shape the 
drop size distribution and determine its variation in space and time35. These parameters are indeed critical in 
linking radar reflectivity (Z) to precipitation intensity (I) and have important implications for understanding 
microphysical processes in precipitation. The parameter ‘a’ is a scaling factor that primarily reflects the influence 
of drop size distribution characteristics, such as the number concentration and size of raindrops. It is sensitive 
to the proportionality between radar reflectivity and precipitation intensity. A higher value of ‘a’ typically 
indicates a larger number of small to medium-sized droplets, which can occur in stratiform or light rain events. 
Conversely, a lower value of ‘a’ may suggest a dominance of larger droplets, often associated with convective 
precipitation. The value of ‘a’ can also be influenced by factors such as temperature, atmospheric conditions, 
and the phase of precipitation (e.g., rain, snow, or mixed-phase). The parameter ‘b’ represents the non-linear 
relationship between reflectivity and precipitation intensity. It reflects how changes in droplet size distribution 
affect the radar reflectivity. The value of ‘b’ is closely tied to the shape of the drop size distribution. A value of 
‘b’≈1 suggests a linear relationship, which is often observed in well-behaved, uniform drop size distributions. 
A value of ‘b’ > 1 indicates that reflectivity increases more rapidly than precipitation intensity, which can occur 
in cases where larger droplets dominate (e.g., in heavy convective rainfall). A value of ‘b’ < 1 suggests a slower 
increase in reflectivity relative to precipitation intensity, which may be observed in drizzle or light rain with a 
high concentration of small droplets. In summary, the parameters ‘a’ and ‘b’ in the Z-I relationship are not merely 
mathematical coefficients but carry significant physical meaning related to the microphysical properties of 
precipitation54. Understanding their variability and implications is crucial for accurate radar-based precipitation 
estimation and for advancing our knowledge of precipitation microphysics.

The measurement of precipitation kinetic energy (KE, J m−2 h−1) necessitates further experimentation and 
analysis, as well as the use of expensive and precise instruments. Numerous research studies have suggested 
that the relationship between kinetic energy and intensity (KE-I) is influenced by local climate conditions and 
the microphysics of precipitation20,57. KE-I relationships can be expressed using various mathematical forms, 
including logarithmic, power-law, polynomial, linear, and exponential functions. A comprehensive discussion of 
these different mathematical representations of KE-I can be found in the works of Angulo-Martínez et al.51 and 
Petrů and Kalibová59. The equations of KE-I used in this study are presented in Table 3.

Fig. 8.  Accumulated precipitation of OTT PARSIVEL2 and Jinghe station.
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Precipitation erosivity, a key factor in soil erosion, is closely related to the kinetic energy (KE) of rainfall, 
which quantifies the energy available to detach soil particles upon impact. The KE-I relationship provides a 
means to estimate rainfall kinetic energy based on rainfall intensity (I), making it a valuable tool for assessing 
soil erosion potential. The kinetic energy of rainfall is a function of the mass and velocity of raindrops. It can be 
expressed as:

	
KE = 1

2mv2� (9)

where m is the mass of a raindrop and v is its terminal velocity. For a population of raindrops, the total kinetic 
energy per unit area per unit time is often estimated using empirical relationships with rainfall intensity.

The kinetic energy of rainfall is a critical input for soil erosion models, such as the Universal Soil Loss 
Equation and its revised version. These models estimate soil loss as:

	 A = R ∗ K ∗ LS ∗ C ∗ P � (10)

where R is the rainfall erosivity factor, which is directly related to the kinetic energy of rainfall; K is the soil 
erodibility factor; LS represents the slope length and steepness factor; C is the cover management factor; P is the 
support practice factor. The rainfall erosivity factor R is calculated by integrating the kinetic energy of rainfall 
over time. For example:

	
R =

n∑
i=1

(KEi ∗ Ii ∗ ∆ti)� (11)

where KEi is the kinetic energy for the i-th time interval, Ii is the rainfall intensity, and ∆ti is the duration of 
the interval.

The KE-I relationship provides a practical and efficient way to estimate rainfall kinetic energy, which 
is otherwise difficult to measure directly. By incorporating region-specific KE-I relationships, soil erosion 
models can achieve greater accuracy and reliability, particularly in areas with unique climatic or microphysical 
characteristics.

Data availability
“The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request.”
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